

Vertical Displacement Oscillatory Modes driven unstable by fast particles: a new fast ion instability of tokamak plasmas

F. Porcelli¹, D. Banerjee¹, S. Cavallero¹, C. C. Kim²

¹DISAT, Politecnico di Torino

²SLS2 Consulting, San Diego, CA, USA

Abstract

Recent progress on the theory, numerical simulations, and experimental observations of Vertical Displacement Oscillatory Modes (VDOM) in tokamak experiments is reported [1]. VDOM are axisymmetric modes (toroidal mode number $n=0$) driven unstable by energetic particles and can have an impact on plasma disruptions, plasma edge stability and confinement [2, 3]. They are a candidate to explain Alfvén-frequency $n=0$ modes recently observed on JET [4], TCV, and MAST-U. The specific types of fast ion distribution functions that can provide an instability drive for VDOM are discussed. Numerical results obtained by the NIMROD code regarding the simulation of $n=0$ modes driven by fast ions are shown.

References

1. Porcelli, F., et al, *$n=0$ Vertical Displacements, impact of magnetic X-points, and Vertical Displacements Oscillatory Modes driven by fast ions in tokamak plasmas* in *30th IAEA Fusion Energy Conference*, IAEA, Editor. 2025, IAEA: Chengdu.
2. Barberis, T., F. Porcelli, and A. Yolbarsop, *Fast-ion-driven vertical modes in magnetically confined toroidal plasmas*. Nuclear Fusion, 2022. **62**(6).
3. Barberis, T., A. Yolbarsop, and F. Porcelli, *Vertical displacement oscillatory modes in tokamak plasmas*. Journal of Plasma Physics, 2022. **88**(5).
4. Oliver, H.J.C., et al, *Axisymmetric eigenmodes excited by alpha particle energy gradients in JET D-T plasmas*. Phys. Rev. Lett., 2025. **submitted July 2025**.