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Plasmas for the synthesis of materials

Substrate

target

energy

vapor

Physical Vapour Deposition (PVD)

1. A fluid precursor (usually gas) 
2. Chemical reactions due to plasma energy
3. “High energy” species diffusion
4. A solid layer is formed
5. A vacuum environment is needed

1. Solid precursor (target)
2. Add Energy in a “physical” way
3. Vapor generated
4. Deposition on a substrate
5. A vacuum environment is needed

Plasma Assisted Chemical Vapour Deposition (CVD)
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Plasmas for the synthesis of materials: PVD
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1. In PVD the way in which the energy is 
delivered to the target defines the 
deposition technique

2. The amount of energy (per unit time) 
influences the features of the generated 
vapor (energy, atoms/ions)

3. The features of the vapor determine the 
characteristics of the growing film



Which plasmas in PVD?

In some deposition techniques the energy is delivered by a plasma:

• Magnetron Sputtering (DC, RF, HiPIMS)
• Cathodic vacuum arc

or a plasma is formed in the process:

• Pulsed Laser Deposition (ns, fs)
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DC Magnetron Plasma
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1. Ar as working gas
2. Static magnetic field  (mT)
3. A conductive target
4. Cathode powered with DC voltage of 100s V
5. Electrons, are trapped in the B field, E x B azimuthal motion
6. much higher probability of collision with Ar more efficient ionization
7. Formation of a glow discharge plasma



DC Magnetron Plasma
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1. Ar as working gas
2. Static magnetic field  (mT)
3. A conductive target
4. Cathode powered with DC voltage of 100s V
5. Electrons, are trapped in the B field, E x B azimuthal motion
6. much higher probability of collision with Ar more efficient ionization
7. Formation of a glow discharge plasma
8. Due to cathode polarization ions impinge the cathode target 0.1 A/cm2

9. Sputtered species are neutrals 1-10 eV
10. Plasma composition: 99% Ar, <<1% metal
11. Penning ionization  𝐴𝐴𝑟𝑟∗ + 𝑀𝑀 → 𝐴𝐴𝐴𝐴 + 𝑀𝑀+ + 𝑒𝑒−



High Power Impulse Magnetron Sputtering Plasma
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1. Same setup of DC Magnetron (cathode, B field, Ar, etc.)

2. Cathode powered with pulsed voltage, width 25 – 100 𝝁𝝁𝝁𝝁, of 100s V



High Power Impulse Magnetron Sputtering Plasma
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1. Same setup of DC Magnetron (cathode, B field, Ar, etc.)

2. Cathode powered with pulsed voltage, width 25 – 100 𝝁𝝁𝝁𝝁, of 100s V

3. Much higher electron density  new physical phenomena occur

4. Direct electron impact ionization of sputtered species 𝑒𝑒− + 𝑀𝑀 → 𝑀𝑀+ + 2𝑒𝑒−

5. Plasma: Ar ions and metal ions (10%-70% of sputtered metal)

6. Metal ions are trapped close to the target.



High Power Impulse Magnetron Sputtering Plasma
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1. Same setup of DC Magnetron (cathode, B field, Ar, etc.)

2. Cathode powered with pulsed voltage, width 25 – 100 𝝁𝝁𝝁𝝁, of 100s V

3. Much higher electron density  new physical phenomena occur

4. Direct electron impact ionization of sputtered species 𝑒𝑒− + 𝑀𝑀 → 𝑀𝑀+ + 2𝑒𝑒−

5. Plasma: Ar ions and metal ions (10%-70% of sputtered metal)

6. Metal ions are trapped close to the target.

7. Abnormal glow discharge plasma  plasma arc BUT stopped by pulse end.

8. Due to cathode polarization ions impinge the cathode target 1-10 A/cm2 (during 
the pulse)



Pulsed Laser Deposition
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1. Pulsed Laser focalized on solid target  
2. Laser matter interaction
3. Plasma & neutrals expansion and thermalization
4. Deposition on substrate



Pulsed Laser Deposition
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1. Pulsed Laser focalized on solid target  
2. Laser matter interaction
3. Plasma & neutrals expansion and thermalization
4. Deposition on substrate

λ 
[nm]

τ 
[s]

E 
[mJ] 

Spot Area 
[mm2] 

F 
[J/cm2]

I 
[W/cm2]

RR 
[Hz]

ns (Nd:YAG) 532 5-7·10−9 730 10 8.8 1.7 · 109 10
fs (Ti:Sapphire) 800 80·10−15 3.8 3.44 0.11 1.38 · 1012 103



Pulsed Laser Deposition
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Mengyun Hu, e al. (2023)

Different dynamics due to different pulse duration
• ns-PLD  plasma generation during plume 

expansion (Inverse Bremsstrahlung)

• fs-PLD  all the pulse energy is absorbed 
plasma generation



Pulsed Laser Deposition
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1. Energy: about 100s eV
2. In ns-PLD regime: ions and atoms
3. In fs-PLD: ions, atoms and nanoparticles due 

to phase explosion phenomena



You are here
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Te (eV) ne (m-3) % 
ioniz.

DC MS 2 − 5 1015 − 1017 <<1

HiPIMS
(in the pulse)

5 − 10 1018 − 1019 10-70

ns-PLD
(early plume)

5 − 20 1020 − 1022 10-100

fs-PLD
(early plume)

10 − 102 1021 − 1023 30-100

Lieberman, M.A. (2005)
Anders, A. (2010)
Toftman , B. (2000)
Gattassv , R.R. (2008)

Engelhardt, T. M. J.(2021)



Some examples …



Nanostructured Si deposited by PLD for lithium on batteries 
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Ar+H2 gas
1. The addition of a background pressure, 

allows to lower energy of the species
2. Nanoparticles are formed during ablation 

in a background atmosphere

Background pressure Macrelli , A. (2026) under review 

Need of porous Si film to allow 
formation of Li Silicide.



Nanostructured Si deposited by PLD for lithium on batteries 
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1. Plasma plume analysed by Optical 
emission spectroscopy

2. Plume intensity grows increasing 
pressure

3. The appearance of Si neutral 
species is related to in plume 
nucleation of Si nanocrystals

4. Use of plasma state to tailor film 
properties

Macrelli , A. (2026) under review 



Ti films deposited by HiPIMS
Dellasega, D. (2021)
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1. Ti films deposited by DC and HiPIMS



Ti films deposited by HiPIMS
Dellasega, D. (2021)
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1. Ti films deposited by DC and HiPIMS

HiPIMS Pulse and current



Ti films deposited by HiPIMS
Dellasega, D. (2021)
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1. Ti films deposited by DC and HiPIMS

2. Use Ti ions to modify growth of the film

3. A proper bias (0 V, 300 V, 500 V) was set to the 
substrate synchronized with the HiPIMS pulse

HiPIMS Pulse and current

bias



HiPIMS vs DC plasma
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HiPIMS vs DC plasma
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Cathodes
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Morphology and structure of deposited Ti

1. Different morphology varying amount and energy of impinging ions
2. New nanostructure form at 300 and 500 V!
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Morphology and structure of deposited Ti

1. Different morphology varying amount and energy of impinging ions
2. New nanostructure form at 300 and 500 V!

3. New crystalline phase is present in the film! From α hcp  ω hex



Modelling HiPIMS plasma: IRM model
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Offer a deeper insight into complex HiPIMS physics +  role of process 
parameters. 

Ionization Region Model (IRM) Gudmundsson, J.T. (2008)
Raadu, M.A. (2011) 

Ionization Region



Modelling HiPIMS plasma: IRM model
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Offer a deeper insight into complex HiPIMS physics +  role of process 
parameters. 

Ionization Region Model (IRM)

Averaged volume global time-dependent plasma chemical model.
Semi-empirical model: set of ordinary differential equations (electrons, 

ions, neutrals, metastable species etc.)
+ 

process parameters (e.g. pressure, config., I(t))

Gudmundsson, J.T. (2008)
Raadu, M.A. (2011) 

Ionization Region



Modelling HiPIMS plasma: IRM model
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Offer a deeper insight into complex HiPIMS physics +  role of process 
parameters. 

Ionization Region Model (IRM)

Averaged volume global time-dependent plasma chemical model.
Semi-empirical model: set of ordinary differential equations (electrons, 

ions, neutrals, metastable species etc.)
+ 

process parameters (e.g. pressure, config., I(t))

temporal evolution of the plasma species, during and after the 
pulse

Gudmundsson, J.T. (2008)
Raadu, M.A. (2011) 

Ionization Region



Modelling HiPIMS plasma: IRM model
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Offer a deeper insight into complex HiPIMS physics +  role of process 
parameters. 

Ionization Region Model (IRM)

Averaged volume global time-dependent plasma chemical model.
Semi-empirical model: set of ordinary differential equations (electrons, 

ions, neutrals, metastable species etc.)
+ 

process parameters (e.g. pressure, config., I(t))

temporal evolution of the plasma species, during and after the 
pulse

Gudmundsson, J.T. (2008)
Raadu, M.A. (2011) 

For details on IRM model 
and recent applications:

Poster session 2, P. 41
D. Vavassori,

“Plasma modelling of non-
reactive and reactive 

HiPIMS discharges for 
tungsten deposition”

Other example of 0D model:

Poster session 2, P. 22
M.Lauriola,

“Numerical investigation of 
the Microwave 

Electrothermal Thruster 
cavity and plasma at 
Politecnico di Milano”



Modelling HiPIMS plasma: simulating plasma current
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Depositions of W films for Plasma Wall Interaction 
studies. Need of a compact W with properties of bulk W. 

IRM model applied to Ar+W HiPIMS plasma to obtain 
the best process parameters



Modelling HiPIMS plasma: simulating plasma current
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Vavassori, D. (2021)

Depositions of W films for Plasma Wall Interaction 
studies. Need of a compact W with properties of bulk W. 

IRM model applied to Ar+W HiPIMS plasma to obtain 
the best process parameters

Temporal evolution and contribution of the different 
plasma species to the total current

1. From Ar W

2. Evolution of the two contributions



Modelling HiPIMS plasma: particle density profile
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Depositions of W films for PWI studies
Target: W
Temporal evolution of particle density profile during 
and after the pulse:

1. Ion families don’t disappear after pulse end

2. Different decay times

Vavassori, D. (2021)



Modelling HiPIMS plasma: ion fluxes
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Depositions of W films for PWI studies
Target: W
Temporal evolution of ion flux composition 
during and after the pulse:

1. During the pulse high amount of W but low 
flux due to back attraction

2. Just after the pulse only W and high flux 

3. At longer times high flux but predominance 
of Ar

4. Important to set properly the delay time 
between main pulse and bias pulse!! 



From modelling to experiment
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Depositions of W films for PWI 
studies
Target: W
Voltage: 200 V, 400 V, 800 V
Bias delay: 0, 60, 100 µs

1. With 400 V and delay 0 or 60 µs 
best properties in terms of 
crystallinity, density and internal 
stress.

2. At 800 V resputtering of the film! 
Sputtered thickness related to 
delay (i.e. type of impinging ion)

476 nm 500 nm 486 nm

416 nm 367 nm 454 nm



Thanks a lot for your kind attention!

POLITECNICO DI MILANO Plasmas for Physical Vapor Deposition of nanostructured materials/ D. Dellasega 34



Physical sputtering
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1. high-energy ions hit the target surface, 
2. collision cascade, transferring kinetic energy to 

surface atoms, 
3. Target atoms exceed their surface binding energy 

and escape.



Physical sputtering
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Energy distribution function of W atoms at 
Ar+ ions impact of 150 eV from SDTrimSPand 
Thompson. The SDTrimSPdata is shown using 
blue color .



Ns-PLD
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