Laser-Driven Electron and Ion Acceleration: Established Results and Progress

M. Salvadori¹, F. Avella^{1,2}, F. Baffigi¹, G. Bandini¹, F. Brandi¹, G. Cristoforetti¹, M. Ezzat¹, A. Fregosi¹, L. Fulgentini¹, D. Gregocki^{1,2}, L. Labate^{1,3}, P. Koester¹, D. Palla¹, S. Piccinini¹, S. Vlachos^{1,2} and L.A. Gizzi^{1,3}

¹Intense Irradiation Laboratory (ILIL), INO-CNR, Pisa, Italy ² University of Pisa, Department of Physics, Pisa, Italy ³National Institute of Nuclear Physics, Pisa, Italy

Laser-driven particle accelerators are emerging as a promising approach offering extremely high-gradient accelerating fields resulting in compact sources of high-energy electrons and ions characterized by ultra-short bunches duration, high peak current and high brightness[1,2]. Electrons are accelerated exploiting plasma wakefield acceleration that allowed to achieve multi-GeV beams chracterized by femtosecond durations and low emittance. Such beams are promising candidates for applications such as compact free-electron lasers [3], ultrafast imaging and novel radiation therapies [4]. Similarly, laser-driven ion acceleration, through mechanisms like target normal sheath acceleration (TNSA), radiation pressure acceleration (RPA) and hybrid approaches, produces energetic beams suitable for uses ranging from cultural heritage [5] to medicine [6] and high-energy-density physics.

In this talk an overview of the fundamental mechanisms behind electron and ion acceleration will be provided. Recent experimental achievements will then be discussed together with a perspective on the most promising applications.

Reference:

- [1] E. Esarey, C. B. Schroeder and W. P. Leemans, Rev. Mod. Phys. **81**, 1229 (2009).
- [2] H. Daido, M. Nishiuchi and A. S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012).
- [3] M. Galletti et al., Nature Photonics, 18 780-791 (2024).
- [4] L. Labate et al., Sci. Rep. 10 17307 (2020)
- [5] M. Salvadori et al. Phys. Rev. Applied, **21**, 064020 (2024)
- [6] F. Kroll et al., Nature Physics **18**, 316-322 (2022)