

A well-established methodology for the conceptual design and neutronic analysis of Accelerator-Driven Systems (ADS), based on both deterministic and Monte Carlo codes

M. Sarotto, G. Grasso, D. Giusti, F. Lodi, R. Pergreffi, D.M. Castelluccio and P. Console Camprini

NUC-ENER-PRO, ENEA, via dei Mille 21, 40121, Bologna

INTRODUCTION

Since 2000s, ENEA laboratory for Design and Analysis of Nuclear Systems was engaged in international research studies related to **ADS** concept aiming **fuel cycle closure** [1, 2]. Recently (commission of Transmutex Swiss company), feasibility study for **~600 MW_{th} lead-cooled ADS** (Fig. 1):

- sub-critical core loaded by **metallic Th & spent fuel**, made of U & transuramics (**UTRU**) coming from PWRs
- coupled with **800 MeV proton (p+)** accelerator having p+ spallation target in two central rings of core lattice

Well-established ENEA methodology was applied to this **dual-purpose ADS**: **TRU burning** and **²³³U breeding**.

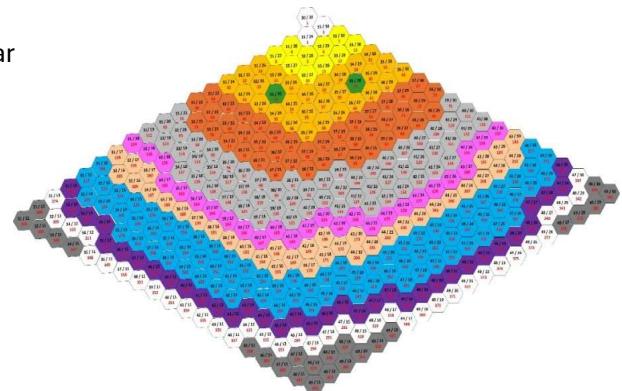


Fig. 1: ERANOS 3D hexagonal model of ~600 MW_{th} ADS core (2π/3 symmetry).

RATIONALE

Both deterministic (as ERANOS [3]) and **Monte Carlo (MC) codes needed** for conceptual core design and neutronic analyses of ADSs

- Deterministic codes can “easily” perform fuel cycle analyses
- MC codes (as MCNP [4]) can do burnup calcs only in “*k*-mode” and not in “fixed-source mode” (used for external p+ source)

But, ERANOS requires “**external source term**”: n density (<20 MeV) deriving from p+ spallation, that can be computed only by MC codes

Application of the METHODOLOGY

External source term for ERANOS 3D hexagonal model of ADS core (Fig. 1, ~1 m fissile length) was calculated by GEANT-4 MC code [5].

Fuel composition at equilibrium of a 5-year closed cycle was inferred by a procedure based on solution of reverse Bateman’s equations [6] and modified accordingly with conceptual scheme of Fig. 2: part of U produced is re-loaded to limit k_{eff} (\rightarrow p+ current) swing in operation. Starting from ERANOS results on multiplication “M” per spallation neutron (1) and related “ k_s ” (2) parameters, relation between core power “ P_{core} ” (MW) and p+ current “ i_p ” (mA) can be retrieved by (3):

$$M = \iint \phi v \Sigma_f dEdV \quad (1) \quad k_s = \frac{M}{M+1} \quad (2)$$

$$i_p [mA] = 10^3 \frac{P_{core} [MW]}{Q [MeV]} \frac{v (1-k_{eff})}{\varphi^* N_s k_{eff}} \quad (3) \quad \varphi^* = \frac{(1-k_{eff})}{k_{eff}} \frac{k_s}{(1-k_s)} \quad (4)$$

where:

- “ N_s ” is number of n (< 20 MeV) per spallation p+
- “ v ” is average n multiplicity per fission, of “ Q ” energy
- “ ϕ ” is n flux inducing fissions “ Σ_f ” in Th-UTRU metal fuel
- p+ current (3) is independent from the cut-off at 20 MeV (typical of deterministic codes) for the “ $\varphi^* \cdot N_s$ ” product

Similar k_{eff} & k_s values (Fig. 3) yield a unitary source importance (4): in a 5x1 year irradiation cycle (simulated by one-batch approach), max k_{eff} was tuned ~0.98 & current i_p estimated in [BoC, EoC] sub-cycle.

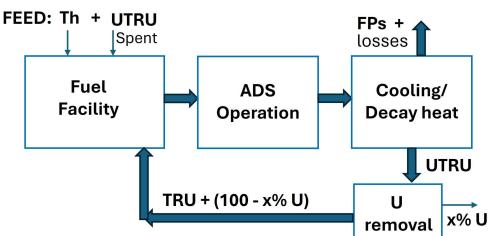


Fig. 2: Closed fuel cycle with TRU (and part of U) recycling.

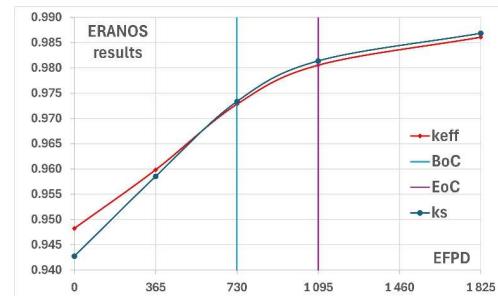


Fig. 3: k_{eff} and k_s variation in 5-year irradiation cycle (one-batch approach).

REFERENCES

- [1] C. Artioli et al., Minor Actinides Transmutation in ADS: the EFIT core design, Proc. Int. Conf. PHYSOR 2008, Vol. 3, Interlaken, Switzerland.
- [2] G. Grasso et al., Extension of the 42-0 approach to ternary fuels and application to a Th-fed, minor-actinides-burner ADS, *EPJ Plus* 2019, 134(12), 601.
- [3] G. Rimpault et al., The ERANOS code and data system for fast reactor neutronics analyses, Proc. of Int. Conf. PHYSOR 2002, Seoul, Korea.
- [4] B. Pelowitz et al., MCNP6 user’s manual, *Techn. Report LA-CP-13-00634 Rev. 0*, 2013.
- [5] S. Agostinelli et al., GEANT4 - a simulation toolkit, *Nucl. Instr. Meth. A* 2003, 506(3).
- [6] C. Artioli et al., A new paradigm for core design aimed at the sustainability of nuclear energy: The solution of the extended equilibrium state, *Ann. Nucl. Energy* 2010, 37, Issue 7.

AKNOWLEDGMENT

The computing resources and related technical support used for this work have been provided by CRESCO / ENEAGRID High Performance Computing infrastructure (funded by ENEA and by Italian and European research programmes) and its staff, see <http://www.cresco.enea.it> for information.

Contact

Massimo Sarotto

Senior Researcher, ENEA NUC-ENER-PRO

Mail

massimo.sarotto@enea.it