

Updates on DTT Theory activities

M. V. Falessi

On behalf of DTT Theory & Simulation group

TCM 48 June 2025

Within the theory and simulations area 4 topics are actively pursued:

- Integration of Theory, Simulation and Experiments: IMAS database and workflows for equilibrium, MHD stability and transport studies;
- Global and Hybrid Gyrokinetic simulations;
- Particle losses due to Ripple and Alfvénic fluctuations;
- EP distribution function modelling;

Integration of Theory, Simulation and Experiments

- Critical for the scientific exploitation of the machine and for predictive capability in reactor relevant plasmas;
- Requires comparison of simulations, experiments and reduced models;
- Accurate modelling of magnetic geometry, kinetic profiles, fluctuation modes structures and EP distribution functions are required;

Integration of Theory, Simulation and Experiments

- Critical for the scientific exploitation of the machine and for predictive capability in reactor relevant plasmas;
- Requires comparison of simulations, experiments and reduced models;
- Accurate modelling of magnetic geometry, kinetic profiles, fluctuation modes structures and EP distribution functions are required;
- Only a centralized IMAS database can ensures integration and consistency;
- Automated IMAS workflows operate directly on the database.

luscia

DTT Research plan

Headline number	Headline contents	Priority (+,++, +++)	ITER	DEMO			
Construction Phase 2022-2029							
C.8.1	Verification of Phase 1 scenarios and extended/kinetic MHD modelling with high fidelity theory-based tools. Predict and prepare Phase 1 Experimental programme.	++	*	*			
C.8.2	Set up IMAS infrastructure and workflows, e.g. ATEP code	+++					

DTT Consortium (DTT S.C.a r.l. Via E. Fermi 45 I-00044 Frascati (Roma) iversità d

UNIVERSITÀ TUSCIA

BICOCCA

6

Consiglio Nazi delle Rosci

ENEL

Agenzia nazionale per le nuove tecnolo l'energia e lo sviluppo economico soste

IMAS equilibria for DTT

- No IMAS equilibria were available at the start of this activity;
- Also no agreement between ENEA and ITER on the usage/development of IMAS;
- A database entry has been created for the DTT full power scenario using the kinetic profiles by the T&M group and a new magnetic equilibrium;
- The ITER cluster has been used to store data and maintain numerical workflows;
- Both Theory and Simulation and T&M groups have dedicated accounts on the cluster;
- Collaboration with ITER allow to have always updated libraries and workflows;

HYMAGYC has been modified to:

- Read equilibrium from an IMAS database and compute a high resolution version suitable for MHD and EP studies;
- Read EP (model) distribution function and kinetic profiles;
- submit a parallel batch job executing HYMAGYC;

It is possible, **but not yet tested**, to use the same workflow substituting HYMAGYC with MARS for MHD stability studies

IMAS equilibria for DTT

	EPW	ORKFLOW		×
WORKFLOW	PARAMETERS	ACTOR S	ELECTION	
user machine shot_nr run_in machine_out run_out itime FURTHEN ligka_541 ligka_541 ligka_5412 pulse_list fast_particles	public dtt 111 12 dtt_out 10 0 R SETTINGS	Equilibrium_code_chease Equilibrium_code Distributions_1 Distributions_2 Orbit_Finder Stability_code CHEASE Parameters HELENA Parameters LIGKA Parameters HAGIS 1 Parameters HAGIS 2 Parameters	0 Helena 0 0 Ugka_m5	
mpi_processes	8	FINDER Parameters]	
Save Configuration	Save and Run	Species Settings]	
Restore Default	Load Configuration	SCENARIO Parameters]	
Exit	Scenario Summary Choic	ce		

- The JINTRAC transport code can now write directly to IMAS databases;
- A collaboration with Paola and the T&M group is underway to generate a set of database entries for various DTT scenarios;
- Development of a MAXFEA interface to IMAS;
- In the future, IMAS database and workflows should be migrated to a dedicated DTT HPC facility

- Preliminary analysis show low EP particle losses though poloidally localized;
- TAEs and other modes may significantly enhance EP losses;
- A general workflow has been developed to compute fluctuation induced fast ion losses in DTT, using MARS results as input for the ORBIT code;

ENEN

luscia

Heat flux: transp_update_q3A_rip_n1M_b_2ktor

Spectrum and radial profiles remapping the perturbed of TAE determined by TAE fields from MARS into the guiding center code DAEPS/FALCON, MARS and HYMAGYC codes (n=10) **ORBIT** Boozer coordinates $\omega_{real}/\omega_{AOMars}$ 1.5 1.5 (a) 0.8 1.0 1.0 B_7/B_0 (%) **SELECTED** 0.5 0.5 2.0 0.6 CASE TAE (m) Z(m) 1.5 0.0 0.0 0.4 -0.51.0 -0.50.2 -1.0-1.00.5 RSAE -1.5-1.50.0 0 2.0 2.5 3.0 1.5 1.5 2.0 2.5 3.0 S 0.2 0.4 0.6 0.8 0 X(m) X(m)

DTT Consortium (DTT S.C.a r.l. Via E. Fermi 45 I-00044 Frascati (Roma)

ENEN

<u>INIVERSITÀ</u>

luscia

Ē

- Equilibrium with R0 = 2.19 m (JETTO PPF=1184)
- NNBI parameters : E = 510 keV, 1 beam@10MW
- 3D TRANSP distribution with 10k test particles

- losses mainly close to $\theta = 0$ in the bottom half of device (LFS);

ENER

-100-150 160 200 240 280 R(cm)

<u>INIVERSITÀ</u>

luscia

- High-statistics simulations with 1 million test fast ions are underway to evaluate the heat power deposition map
- Inclusion of multiple TAEs as calculated by MARS is in progress
- Apply this workflow to the latest version of the E scenario;

Equilibrium EP distribution function modelling

Study of beam NBI EP distribution functions in various DTT plasmas:

- different I_p/B_t values
- NBI simulated on plasmas of scenarios A, C, E
- Steady-state beam EP distribution functions is given as input for nonlinear GK simulations, i.e. HYMAGYC
- EP distribution analysis in COM space (DTT Research Plan)

A, C scenarios do not foresee NBI, though NBI will be used in similar plasmas during DTT operation phases

Next steps

- Provide, upon request, fast ion distribution functions to other groups (e.g., to HYMAGIC, for MHD studies, and for diagnostics studies – e.g., Collective Thomson Scattering)
- Depending on the advances with ASCOT-RFOF and DTT IMAS implementation, preliminary ICRH+NBI simulations can be set
- Investigate the importance of using first wall as a boundary condition for EP losses and not the LCFS to correctly estimate the fraction of EP prompt losses

Thank you for your attention!

- Collisional slowing down simulated with ASCOT:
 - Steady-state beam EP distribution functions
 - Collisional losses
 - Absorbed power, current-drive, torque ٠

Take-home messages for DTT:

- Collisionless beam EP analysis:
 - Passing orbits dominate ref. scenario E
 - Passing/trapped orbit ratio varies with plasma density and NBI energy
 - Small fraction of stagnating orbits
 - Importance of using the first wall as a boundary condition for EP losses (ASCOT) and not the LCFS (CoM) to correctly estimate the fraction of EP prompt losses
- Collisional slowing down of beam EPs:
 - Efficient beam coupling, slightly reduced at high NBI energy at low plasma density
 - NBI current drive of 0.24 MA in ref. scenario E
 - NBI provides torque to the plasma of some Nm
 - Off-axis beam power deposition due to vertically shifted injection geometry
 - Relevant ion heating between 40% and 55% of the absorbed power, depending on NBI energy and plasma kinetic profiles
- This work contributed to the DTT research plan and constitutes an input for other DTT studies (e.g. MHD)

De Piccoli C et al., Front. Phys. 12:1492095, 2024, doi: 10.3389/fphy.2024.1492095

lergy [eV] 510 keV -0.5 0.5 0 pitch rgy [eV] 255 keV

IMAS equilibria for DTT

DTT Consortium (DTT S.C.a r.l. Via E. Fermi 45 I-00044 Frascati (Roma)

- First analysis show low EP particle losses (but poloidally localized);
- TAEs and other modes may enhance them;

Ē

HYMAGYC has been modified to:

- No IMAS equilibria when this activity studied;
- A database entry for the DTT full power has been created and the workflow has been sucesfully tested;
- JINTRACK transport code is now capable of writing directly IMAS databases.
 A collaboration with Paola and the T&M is taking place to create a set of databases for different DTT scenarios;
- ITER cluster is used to store data and maintain numerical workflows.

3 main issues tackled recently:

- Develop a full power Hybrid scenario with q>1 to avoid large sawtooth crashes (two upcoming conference presentations EPS and TTF)
- Revise flux consumption by including two elements previously neglected (L-H threshold scaling for metallic machines and use of EC current drive)
- Revision of EM equilibria with v16-v17
- Continue studies of negative triangularity scenarios (one invited talk at TTF)