1st ENEA-KFE Remote Meeting on bilateral collaboration **CNPS** activities

Thursday, November 28 Teams videoconference

DTT superconducting magnet system: design challenges, fabrication route and testing

GIAN MARIO POLLI

DTT S.c.a r.l., ENEA NUC, C.R.Frascati On behalf of DTT team

1° ENEA-KFE remote meeting on bilateral collaboration acitvities

28/11/2024

Teams videoconference

DTT Consortium (DTT S.C.a r.l. Via E.Fermi 45 I-00044 Frascati (Roma) Italy)

Outline

- Introduction: KSTAR a source of inspiration
- DTT magnet design challenges
- Fabrication route and prototyping
- Testing and assembly
- Concluding remarks

A source of inspiration TF coils: integration TF casing integration schedule: 4.25 years from kick-ENE off-meeting, 6 months per TFC from WP & casing Dr. Br FE available Main features: WP insertion into casing INDUSTRY DAY Casing welding · Embedding impregnation Mechanical final machining He cooling piping insertion Final acceptance tests **14** December 2018 Key issues: 15 kV DC tests in vacuum (Paschen proof) Electrical breakers 316LN ITER like 'illa Mondragone - Via Frascati, 51. Monte Porzio Catone (Rome) Italy 100% welds control Final machining for tolerance Piping insulation Electrical terminations TF coils: Conductors TF coils: Winding Packs (WP) 17.2 mm Ĩ TF WP manufacturing schedule: 4.25 years from Conductors & Strand manufacturing schedule: 3.5 years from kickkick-off-meeting, 1 DP every week off-meeting, 2 sets of UL every 2.5 months 24.1 Main features: 4 rDPs (regular Double-Pancakes) 325 mm External dimensions: 24.1 x 17.2 mm 2 sDPs (side Double Pancakes) Jacket thickness: 19 mm Max. hydraulic length: 135m Low Void Fraction: 26.3% # turns: 130 · Cable: 300 Nb₃Sn and 54 Cu strands ~ 5 tons 0.82mm ITER-like Nb₃Sn strands (slightly enhanced) Cable pattern: Key issues: Mattfim S, PhD thesis, Universita degli 3x4x5x5 + 3x3x6 Cu core Two winding lines in parallel studi di Pica 2002 • Unit length (UL): 270 m (regular), 190 m (lateral) Heat treatment • Total # of ULs: 72 (regular) + 36 (lateral) + 8 Insulation after heat treatmen Internal joint (<2nOhm) spare · He inlets 15 kV DC tests in vacuum (Paschen proof) Key issues: 주의 강 자장 · 55 MPa insulation shear strenght • 316 LN ITER grade jacket Tight tolerance on current line (phi < 2 mm) 100% welds testing

28/11/2024

He leak testing (pressure, flow)

3

A source of inspiration

Primary design requirements

The design of DTT magnet system was carried out under many demanding requirements:

- High plasma current (up to 5.5 MA)
- High toroidal field (6 T)
- Long plasma pulse duration (up to 100 s)
- Relatively high neutron heating on superconductors
- Compact medium-size machine
- Wide and still evolving research program
- Largest possible flexibility in terms of achievable plasma configurations

SC Magnet System Design

It has been performed basing on the state-of-the-art of SC magnets available.

Due to tokamak size and requirements, challenges have been faced to increase performances, in particular for CS.

The design of the magnet system was assessed in the following conservative conditions:

- **No plasma** (i.e. after a plasma disruption event)
- & PF coils increased according to the current induced by plasma quenching and possible position & shape control request, in any instant of the reference scenarios Most demanding conditions have been found in DN and XD configurations

High engineering current densities: high range	Parameter for TF coils	DTT	ITER	JT-60SA	K-STAR	
of SC operation;	SC material adopted	Nb₃Sn	Nb ₃ Sn	NbTi	Nb₃Sn	
high stress in some areas of SS and insulation; flexibility in operations resulting in contrasting	I _{op} (kA)	42.5	68.0	25.7	35.2	
requirements depending on plasma	В _{реак} (Т)	11.9	11.8	5.7	7.2	
	Min T _{margin} (K)	>1.2	0.7	1.2	1.1	
	J _E on conductor (A/mm²)	67	45	58	54	
	J _E on WP (A/mm²)	56	18	36	?	
11/2024	I LIVE/ The Elemente meeting on brateral cond					

acitvities

Toroidal Field coils

(Project Leader: <u>A. Di Zenobio</u>, ENEA)

TF coils confine plasma inside the chamber 6 T are also a requirement from ECR heating

Thermal-Hydraulic Analyses

Analyses are following updates of plasma scenarios and optimization of procurement (R. Bonifetto, POLITO)

28/11/2024

1° ENEA-KFE remote meeting on bilateral collaboration acitvities

DTT vs ITER TFC

ITER TFC: Nb3Sn coils Bmax = 11.8T I_turn=68 kA Turns=134 R=6.2 m B_plasma=5.3 T

16.5 m

DTT TFC: Nb3Sn coils Bmax = 11.9T I_turn=42.5 kA Turns=84 R=2.19 m

B_plasma=5.85 T

Courtesy of ITER Organization

28/11/2024

SC Magnet System Design

Current status

0 /	
TF coils: completed	Procurements are on-going. Further analyses were performed to optimize and/or verify the production choices and the compliance with new plasma scenarios.
PF coils: completed	Engineering design is completed. Tender is on-going.
CS: under review	Reference conceptual design is completed. Alternative designs are being investigated for operation risk minimization and plasma scenarios optimization. Tender to be launched in 2025.
SC Feeders: on-going	Conceptual design is completed. Further thermal-hydraulic and FEM analyses are on-going. Tender to be launched in 2025.
Cryoplant: on-going	Conceptual design is completed. Collaboration with CEA to complete design, integration, technical specification. Tender to be launched in 2025.
/2024	1° ENEA-KFE remote meeting on bilateral collaboration

acitvities

Superconducting Strands

0.82 mm wires	Min. Critical Current (requested by DTT)	Min. Critical Current (guaranteed by the awarded supplier)	Awarded Supplier	Delivered amount (tons)
DTT TF (Nb ₃ Sn)	285 A (4.2 K; 12 T; 0% strain)	320 A (4.2 K; 12 T; 0% strain)		55 completed
DTT CS & PF1/6 (Nb ₃ Sn)	270 A (4.2 K; 12 T; 0% strain)			0/18,6 (contract withdrawn)*
DTT PF2-5 CURUKAWA (NbTi)	500 A (4.2 K; 5 T)	confirmed		27.5 completed
	* =	new tender on-a	ioina	

7 different CICC layouts are foreseen for the 3 sets of magnets with Unit Lengths going from 195m up to 780m

Copper dummies have been manufactured for all the 7 conductors Super-dummies and SULTAN samples have been prepared for the TF, PF2 to PF5 ones

Conductors

The first **50 conductor Unit Lengths for TF** have been delivered to coil manufacturer ASG

acitvities

Strands - TF

Strand measurements were repeated in ENEA SC labs for verification, over a randomly selected samples population. Inspectors have been also sent to suppliers for QA verifications. Agenzia nazionale por le nuove tecnologie. l'energia e lo sviluppo economico sostenibile

Total quantity of Nb₃Sn strand (55 tons) has been delivered to ENEA.

It is currently being cabled by conductor manufacturer.

<10% of non-conform strands have been accepted, as they are above the original Ic minimum requirement (used mainly for super-dummies).

14

	Min. Critical Current (requested by DTT)
DTT PF2-5 (NbTi)	500 A (4.2 K; 5 T)

«Standard» requirements for Nb-Ti wires

Wire design: Nb-Ti filament bundles. Cu:nonCu = 1.9 Wire diameter = 0.82 mm Wire coating: Ni

Strands - PF

TF SULTAN qualification tests at Swiss Plasma Center

Parameter	DTT TF Q1 (Nb ₃ Sn)
I _{op} / B _{max}	42.5 kA / 11.9 T
# Sc strands/diameter	420/0.82 mm
# Cu strands/diameter	180/0.82 mm
Cable twist pitches (mm)	TFA: 100/110/125/140/300 TFB: 82/135/180/220/290
CICC ext. dimensions	28.8x22.1 mm
Jacket thickness	1.9 mm
VF in bundle	26.7%

ε_{eff} from tests (TF-A): -0.56%

ε_{eff} adopted in design: -0.65%

TF-A sample is well above the black dashed lines which represents the DTT coils design acceptance line.

TF-B shows an initial degradation that brings the performance to minimum, but then is stable.

PF SULTAN qualification tests at Swiss Plasma Center

Both PF2/5 and PF3/4 samples are well above the expected values at the Sultan test conditions.

TF coil magnet system: supply chain

Courtesy of G. Ramogida & MAG team

17

TF coil winding

Þ

- WP1: mounted on the impregnation frame on 15/11/24
- WP1: ready before the end of 2024
- WP2: all DP wound; joint between DP on-going
- WP3: DP1 in winding

The mock-up was subjected to cryogenic conditions, cooled with liquid nitrogen, while monitoring strain and temperature gradients via spectral shifts using fiber optic technologies.

CS status

Two reference solutions have been developed and brought to an equivalent conceptual design level:

- Layer-wound
- Pancake-wound

Both solutions present the same criticality wrt the insulation at the corners of the CICC (and similar to the other past projects). According to the standard design criteria the insulation should fail due to the excessive load

The strategy implemented by DTT, following past projcets, consists in:

- Producing two mock-ups
- Testing the mockups in:
 - cryogenic conditions
 - Under cyclic loading
- Scope: assess the electrical insulation during and at the end of the tests

CS issues

CS system

- Mock-ups for testing insulation strength under relevant cyclic loading at 77K are under fabrication
- Heat treatment done including de-sizing in O2 atmosphere @ 450°C
- Impregnation will be before the end of the year
- Procurement procedure for hydraulic and control system for Giunone Facility in CR ENEA @ Brasimone on-going -> testing Q1-2025

Cryogenic system:

- S-DRM under preparation;
- Tender to be published in early 2025

LOOP	Utilities	DP (bar)	т் (g/s)	T _{in} /T _{out} avg (K)	Eq. Heat Ioad @4.5K (W)	Eq. pressure drop load @4.5K (W)	Circulator dissipation load @4.5K (W)	Total equivalent load @4.5K	LOOP	Utilities	Average heat load during POS (W)	Average heat load during LBAK (W)	Average heat load during SBAK (W)	DP (bar)	т (g/s)	T _{in} /T _{out} avg (K)	Total equivalent load @4.5K
1	- TF WP - TF case + thermal anchor - TF feeders	1.2 (5.4-4.2)	825	4.3/4.98	2170	513	1088	3771	1	- TF WP - TF case + thermal anchor - TF feeders	1952		1350	0.3 (5.4-4.2)	50	5/8	1065
2	- PF coils - CS coils - PF feeders	Hea	t 780				866	2491	2	- PF coils/feeders - CS coils/feeders	1055	Hea	it loa	ads ^₀ ªdu	ring	BA/K	856
	- CS feeders	(3 4)				-			3	- Cryopanels	185	0	0		0	-	
3	- Cryopanels	0.5 (5-4.5)	180	4.5/4.8	214	40	-	254		- Thermal shield		50000 ⁽¹⁾	100000(2)	2 (15-13) (2)	330(2)	80/140(2)	3280 ⁽²⁾
4	- Thermal shield - Cryop. chevron baffle - Th. Anchor GS TF +	2 (15-13)	443	80/100	1655	606		2261	4	 Cryop. chevron baffle Th. Anchor GS TF + VB/CTB thermal shield 	41420	6750	6750	1 (15-14)	101	80/100	444
	VB/CTB thermal shield								5	- CL TF	92218	51935	51935 (0)	3	40	50/300	1438
-	- CL TF - CL PF - CL CS	3	71.87	50/300	50/300 1638 947 - 2585 - CL CS	- CL CS	55510 51555		51555 (6)	(4-1)	40	30,300	1450				
5		(4-1)	48	50/300	1094	632	-	1726	⁽¹⁾ Port and Vacuum Vessel temperature 110°C ງ <i>d²⁾Port ສາດ ກິຈັດແມ່ນ</i> Vessel ໂຮສາກອາດແມ່ງສາດ 200°C				TOTAL		7083 W		
TOTAL 11362 W 10503 W (lower <i>m</i> on CL)								/iti	ies							23	

Frascati Coil Cold Test Facility

ENEA, in parallel to DTT, is also preparing a dedicated cryogenic test facility in CR Frascati (Rome), where all the Nb₃Sn coils of DTT will be tested in cryogenic conditions and full current. The first contract for the procurement of the cryostat and the current leads has been awarded in June 2023. The facility will be ready for testing at the end of 2025/start of 2026 in time for the first TF coil.

Courtesy of ENEA & MAG team

1° ENEA-KFE remote meeting on bilateral collaboration acitvities

Courtesy of G. Ramogida & MAG team

28/11/2024

Frascati Coil Cold Test Facility

In the facility all the Nb3Sn coils will be tested as a QA measure in order to assess:

- Magnets performance characterization
- Superconducting performance homogeneity through the manufacture
- Testing of insulation in cryogenics Tests of:
- 18 TF coils
- 7 CS coils
- PF6 and PF1 (plus a dummy coil)
 All the tests shall be performed using the TF power supply, so only fast discharges will be possible during the test of the PF and CS coils
 Test program inspired by JT-60SA TF facility

Courtesy of ENEA & MAG team

Courtesy of G. Ramogida & MAG team

TF coils and Vacuum Vessel

JT-60SA/KSTAR-like assembly

Þ

28/11/2024

acitvities

Assembly procedure: cryodistribution

One of the main challenges included in the assembly contract to be placed next year is the definition, procurement, assembly and testing of the cryodistribution inside the cryostat.

KSTAR: top view

DTT model: Bottom view

1° ENEA-KFE remote meeting on bilateral collaboration acitvities

Concluding remarks

- ✓ DTT magnet design based on state-of-the-art of SC magnets available
- ✓ Prototypes before tender and qualification during tender are anyhow foreseen
- ✓ KSTAR experience would be highly valuable for:
 - ✓ Manufacturing issues (NC, CR, etc)
 - ✓ Magnet testing procedures
 - ✓ Assembly procedures and assembly tools
 - ✓ Cryogenic/feeders distribution
 - ✓ Integrated commissioning program

Thank you for your attention

www.dtt-project.it

acitvities

Acknowledgments

E.Acampora, P.Agostinetti, R.Albanese, A.Allio, S.Almaviva, R.Ambrosino, V. Anagnostopoulou, M.Angelone, M.Angelucci, G.Apruzzese, M.Aquilini, A.Augieri, B.Haiorci G.Barone, G.Bartolomei, M.Baruzzo, V.Belardi, E.Benedetti, P.Bettini, S.Bifaretti, M.Bigi, W.Bin, R.Bojoi, M.Boldrin, T.Bolzonella, F.Bombarda, V.Bonaiuto, L.Boncagni, M.Bonesso, R.Bonifetto, F.Braghin, M.Brombin, A.Bruschi, D.Busi, G.Calabrò, M.Caldora, G. Camera, S.Candela, V.Candela, M.Caponero, D. Caprini, A.Cardinali, L.Carraro, A.Castaldo, R.Castigliego, M.Cavenago, S.Ceccuzzi, G.Celentano, G.Centomani, A.Chiariello, C.Cianfarani, M.Ciotti, S.Ciufo, A.Cocchi, A.Colangeli, F.Crea, F.Crisanti, A.Cucchiaro, V. D'Agostino, S. Dal Bello, M.Dalla Palma, D.D'Ambrosio, F.Danè, A. Davitti, M. De Bastiani, R.De Luca, E.De Marchi, G.De Marzi, G.De Masi, M.De Nardi, G.De Sano, M.De Santis, A.della Corte, S.Desiderati, G. De Tommasi, S.Di Giovenale, G.Di Gironimo, E. Di Pietro, A.Di Zenobio, U.Diana, R.Dima, Duran, I., E. Emanuelli, B.Esposito, F.Fabbri, F.Fanale, P.Fanelli, D.Farina, A.Fassina, M.Favaretto, G.Favero, C.Fenzi, A.Ferro, C.Fiamozzi Zignani, L.Figini, M.Fincato, D.Fiorucci, S.Foschini, N.Franceschi, A.Frattolillo, R.Freda, A. Frescura, M.Fulici, M.Furno Palumbo, L.Gabellieri, E. Gaietti, E.Gaio, S.Garavaglia, C.Gasparrini, L.Giannini, F.Giorgetti, L.Giovagnoli, L.Giudicotti, M.Gobbin, L.Grando, G.Granucci, T.Grasso, S.Grazioso, G.Greco, S.Greco, H.Greuner, G.Griva, S.Guerini, S.Hanke, V.Hauer, Hoppe, M., Houry, M., M. Jafrati, A. Jaunese, R. Jervolino, V. Imbriani, D. Indrigo, P. Innocente, B. Koncar, L. Laguardia, A. Lampasi, C. Lanchi, F. Lanzotti, M. Lazzaretti, F. Lisanti, D. Liuzza, P.Lo Russo, R.Lombroni, C.Lopes, F.Lucchini, G.Maddaluno, G.Manduchi, M.Manganelli, P.Mantica, N.Marconato, M.Marconi, A.Marin, R. Marinari, F. Marino, D. Marocco, R.Marsilio, E.Martelli, P.Martin, R.Martone, D.Marzullo, D.Mascali, N. Massanova, V.Mellera, G.Messina, G.Miccichè, M.Micheletti, S.Migliori, D.Milanesio, S.Minucci, F.Mirizzi, L.Morici, A.Moro, Munoz, M.G., A.Murari, S.Musumeci, L.Muzzi, G.Nallo, R.Neu, A.Oliva, D.Pacella, F.Padovani, N.Paganucci, A. Pagliaro, S. Palomba, D.Paoletti, G.Pastore, T.Patton, M.Pavei, E. Peluso, A.Pepato, P.Petrolini, N.Pilan, S.Pipolo, A.Pironti, S.Piras, A.Pizzuto, P.Platania, G.M.Polli, V.Prandelli, G.Pucino, F.Raffaelli, K.Raczka, G.Ramogida, B.Raspante, G.Ravera, A.Reale, P.Rebesan, M.Recchia, D. Regine, B.Riccardi, D.Ricci, M.Ripani, N.Rispoli, D.Rizzetto, S.Roccella, H.Roche, M.Romanato, F.Romanelli, A.Romano, R.Romano, A.Salvitti, C. Salvia, M.Sansovini, F.Santoro, E.Sartori, A.Satriano, L.Savoldi, C.Scardino, S.Schmuck, O.Schneider, L.Senni, Sias, G., A.Simonetto, A.Sirignano, G.Spizzo, M.Spolaore, H.Strobel, C.Tantos, C.Terlizzi, N.Terranova, P.Tinti, G.Tomassetti, G.Torrisi, A.Trotta, G.Trovato, S.Trupiano, A.Tuccillo, O.Tudisco, S.Turetta, S.Turtù, M.Utili, V.Vaccaro, A.Vale, M.Valente, M.Valisa, V.Variale, E.Vassallo, G.Vecchi, G.Ventura, F.Veronese, R.Villari, F.Villone, P.Vincenzi, V.Vitale, S. Vives, F.Vivio, G.Vlad, M.Zaccardi, R.Zanino, F.Zanon, A.Zappatore, G.Zavarise, P.Zito, A.Zoppoli, P.Zumbolo

