

ALMA MATER STUDIORUM Università di Bologna

WPMAG Final Meeting, February 4, 2025 MAG-S.01.01-T022-D001 The shift to HTS magnets for compact fusion reactors: modelling needs and numerical tools

M. Breschi¹, <u>L. Savoldi²</u>, L. Cavallucci¹, L. Bottura³

¹ Alma Mater Studiorum - Università di Bologna, Italy
 ² Politecnico di Torino, Italy
 ³ CERN, Geneva, Switzerland

HTS magnets for fusion: key facts (I)

New paradigms are emerging for HTS fusion magnets:

- Increasing operating temperatures (\geq 20 K):
 - 1) higher energy efficiency

2) different material properties (higher heat capacity of solids, lower cryogen inventory)

- Cable-in-Conduit and forced flow concepts (as for LTS magnets), but also
- Non-insulated or partially-insulated coil layouts gaining relevance

HTS magnets for fusion: key facts (II)

Several new challenges cannot be ignored in the behaviour (→ modelling → design) of the future HTS magnets:

Do the new challenges push to an EVOLUTION or to a REVOLUTION in the magnet design?

L. Savoldi et al., IREF 2023

Here:

- Identify the characteristics times of the main phenomena occurring during transition to the normal state in the case of HTS-CICC
- Highlight main modeling challenges

Relevant characteristics times for a HTS forced-flow CICC - I

SECtor-ASsembled (SECAS) conductor based on BRAided STacks (BRAST)

- A range of the characteristics times useful for stability studies in CICCs was previously identified for LTS cables [*]
- Here: identification of the electrical, thermal, hydraulic characteristics times for the SECAS HTS fusion conductors
- **Computations** both at 4.5 K and at 20 K.
- Magnetic field from 1 T to 13 T, RRR in the Cu sector from 100 to 300, RRR in the REBCO tape Cu stabilizer from 20 to 30.

[*] L. Bottura, *Physica C*, 310, pp. 316–326, 1998

Relevant characteristics times for a HTS forced-flow CICC - II

SECtor-ASsembled (SECAS) conductor based on BRAided STacks (BRAST)

- Electrical and thermal contact resistances varied in a range of measured values
- A heated region of length *L* is considered for the calculation of the time constants.

 \circ L ~ 0.1 m

Measurements of R_{contact} ongoing by E. Tamagnini in collaboration with the team @Fermi Lab

LTS vs HTS characteristic times

The characteristic
 electric and thermal
 timescales of the HTS
 conductor are
 generally greater than
 the corresponding
 ones of the LTS
 conductor

Relevant characteristics times (HTS): summary (*)

[*] M. Breschi et al, submitted to IEEE Trans. Appl. Supercond., 2024

- No impact of temperature on electromagnetic time constants
- He transit time becomes
 faster at 20 K
- At 20 K characteristics times for heat diffusion become larger than at 4.5 K
- In the region from 10⁻⁴ s to 1 s the characteristic times of thermal, electrical and hydraulic phenomena are similar → coupling between physics is required

 \bigcirc

Modeling challenges

- : multi-physic models including
- EM: Strong anisotropy of HTS tapes
- TH: Suitability of lumped thermal modelling?
- MEC: Stress management at tape level
- RAD: damage to be assessed at tape level, heat deposition @ coil level
- MEC EM

MEC

- TOOLS?
- For non-insulated or partially-insulated coils:
 - MEC+RAD at tape level, influencing electrical and thermal behavior
 - EM: current distribution on larger/longer spatial/time scales
 - T(H) at coil level (conduction cooling)
 - TOOLS?

EM

RAD

ALMA MATER STUDIORUM Università di Bologna

Thank you for your kind attention !

M. Breschi, L. Savoldi, L. Cavallucci, L. Bottura

