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HTS magnets for fusion: key facts (l)

New paradigms are emerging for HTS fusion magnets:
o Increasing operating temperatures (> 20 K):
1) higher energy efficiency

2) different material properties (higher heat capacity of solids, lower
cryogen inventory)

o (Cable-in-Conduit and forced flow concepts (as for LTS magnets), but also

o Non-insulated or partially-insulated coil layouts gaining relevance
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HTS magnets for fusion: key facts (1)

o Several new challenges cannot be ignored in the behaviour (= modelling
— design) of the future HTS magnets:

Do the new
challenges push to
an EVOLUTION or to
a REVOLUTION in the
magnet design?

TH

Here: L. Savoldi et al., IREF 2023

o ldentify the characteristics times of the main phenomena occurring during
transition to the normal state in the case of HTS-CICC

o Highlight main modeling challenges
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Relevant characteristics times for a HTS forced-flow CICC - |

SECtor-ASsembled (SECAS) conductor
based on BRAided STacks (BRAST)

'S*tifggo o A range of the characteristics times useful for
stability studies in CICCs was previously
Cu identified for LTS cables [*]

sector
o Here: identification of the electrical, thermal,

hydraulic characteristics times for the SECAS
HTS fusion conductors

Helium
channel

steel

jacket o Computations both at 4.5 K and at 20 K.

o Magnetic field from 1 Tto 13 T, RRR in the
Cu sector from 100 to 300, RRR in the REBCO
[*] L. Bottura, Physica C, 310, pp. 316-326, 1998 tape Cu stabilizer from 20 to 30.



Relevant characteristics times for a HTS forced-flow CICC - 1]

SECtor-ASsembled (SECAS) conductor

based on BRAided STacks (BRAST)
o Electrical and thermal contact

resistances varied in a range of
measured values

o A heated region of length L is
considered for the calculation
of the time constants.

o L~0.1m

SS Splral Measurements of R.yntact ©NgOINg
by E. Tamagnini in collaboration
with the team @Fermi Lab




LTS vs HTS characteristic times

o The characteristic
electric and thermal
timescales of the HTS
conductor are
generally greater than
the corresponding
ones of the LTS
conductor

oA RTEP
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Relevant characteristics times (HTS): summary (*)

[*] M. Breschi et al, submitted to IEEE Trans. Appl. Supercond., 2024

o No impact of temperature
on electromagnetic time
constants

o He transit time becomes
faster at 20 K

o At 20 K characteristics
times for heat diffusion

become larger than at 4.5 K

o Inthe region from 10%s to
1 s the characteristic times
of thermal, electrical and
hydraulic phenomena are
similar = coupling
between physics is
required
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Modeling challenges

: multi-physic models including

« EM: Strong anisotropy of HTS tapes

RAD

e TH: Suitability of lumped thermal modelling?

 MEC: Stress management at tape level

RAD

TH

 RAD: damage to be assessed at tape level, heat deposition @ coil level

e TOOLS?

For non-insulated or partially-insulated coils:
e MEC+RAD at tape level, influencing electrical and thermal behavior

 EM: current distribution on larger/longer spatial/time scales

* T(H) at coil level (conduction cooling)

e TOOLS? 8
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