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— DTT has been designed to describe the physics
of reactor-relevant fusion plasmas;

— reactor-relevant plasmas are a complex system,;

— as a result, it gives rise to challenges in the
theoretical description of the physics processes;
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Theoretical challenges in describing the physics of DTT



Suggestions received

— Glve more emphasis to ITER collaborations;

— give inputs and collaborate with the diagnostics
team;

— |IMAS Infrastructure maintenance and workflows
should be included within Chap. 8

— Include a set of headlines relatives to the different
construction phases;



DTT & ITER collaborations

— We established an important
collaboration regarding the
representation of the kinetic
equilibrium;

— Crucially important for §f and
Full-f gyrokinetic simulations
of reactor relevant plasmas;

— New sub-sections written with
G. Brochard, P. Vincenzi, C. de
Piccoli
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Phase Space diagnostics
— Collaborations with the diagnostics ., =~
team started: J %
— Crucial importance of IMAS E° | “ ,,)
infrastructure; R /
— Collaborations with M. Nocente e
and M. Salewski on phase space 1\ g

diagnostics for validation of
models, e.g. FIDA diagnostics; I

— New sub-section on experimental
techniques for the reconstruction
of 3D phase-space distribution
functions;

(e) ¢ = 26.4°, E = 95keV



Headlines

— A set of headlines has been added:;
— we emphasized the importance of early/intermediate

g CNPS :

phases;
C.1 Verification of Phase 1 scenarios and Construction 2022-
extended/kinetic MHD modelling 2029

with high fidelity theory-based tools. | ++
Predict and prepare Phase 1
Experimental programme.
C.2 Set up IMAS infrastructure and
+++

workflows, e.g. ATEP code
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Uertfi:cation ﬂféPhase 1 ésf:enarius.f and
extended/kinetic MHD modelling

-with high fidelity theory-based tools. .

Predict and: prepare Phase 2
Experimental programme.

++ ... :

1.2

Validation of IMAS workflows under
Low EP (ICRH) Pressures and Currents
and scenario optimization

++

2.1

Verification of Phase 2 scenarios and
extended/kinetic MHD modelling
with high fidelity theory-based tools.
Predict and prepare Phase 3
Experimental programme

+++

Phase 2

2034-
2038

2.2

Validation of IMAS  workflows
description of new EP transport
regimes with NNBI and high current
and scenario optimization

++

2.3

Development of reduced models for
describing DTT's full power EP
transport

++




Headlines
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3.1

Verification of Phase 3 scenarios and
extended/kinetic MHD modelling
with high fidelity theory-based tools.
Predict and prepare Phase 3
Experimental programme

bt

Phase 3

2038-...

3.2

Validation of IMAS workflows with
full power plasmas and scenario
optimization

++

3.3

Development of reduced models for
describing DTT’s EP transport

++




Next versions of Chapter 8

— As stated in the rationale this version of the Chapter is
mostly focused on the physics of reactor-relevant
plasmas; This should change in the next versions;
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Next versions of Chapter 8

— As stated in the rationale this version of the Chapter is
mostly focused on the physics of reactor-relevant
plasmas; This should change in the next versions;

— Edge physics paragraph should be expanded and
should become a separate section;

— Global gyrokinetic simulations of DTT plasmas should
be included and compared to reduced descriptions;

— The advanced transport descriptions introduced should
be applied to DTT Phase 1, Phase 2 and Phase 3
plasmas;

— More Iinteraction with the diagnostic team Is required.
This section should be expanded,;



Follow up of DTT-RP activities

— First collaborations have been made on voluntary
basis. We need to find a way to pay for PMs
coming from institutions outside the SCARL;



Follow up of DTT-RP activities

— First collaborations have been made on voluntary
basis. We need to find a way to pay for PMs
coming from institutions outside the SCARL;

— Chapter 8 should be more interlinked with other
chapters;
— A set of topics where important theory

developments and/or understanding is required
should be mentioned throughout in the RP;



Thank you for your attention!



8.4 Integration of theory, simulation and
experiments |

— Importance of building an o .l_ﬁo T

infrastructure to verify and ¢ = ol

validate reduced models on I = 3

DTT, O e e s 3197395195505
— role of IMAS infrastructure: e rese e
— Ligka-Hagis EP workflow, ~ W] 1 oo

synthetic diagnostics; Lo
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Backup
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Figure 3 {a) Continuous spectrum (n=20) and location of TAE in DTT; (b) normalized parallel mode structure of the magnetic stream
function at po=0.702; 2D (d) 3D mode structure (n=20) obtained with an ad-hoc radial envelope. Courtesy of G. Wei [G. Wei 2024]. 4
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8.4 Integration of theory, simulation and

experiments

<dPz/dt>

ATEP code: solve transport equation for PSZS with sources and collisions, Lauber 2022
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8.4 Integration of theory, simulation and -
experiments "

F (Pz.E.t), Time=2 [arb units] Flt) - F(t-1), Time=2 [arb units]
1000 T T T T T 1000
5e+17

aQ0Q

s00 L de+17 _ |
g.,?DD - 3e+17 490 L
@600 | 2e+17 &o0
W
iSDU - le+17 S00 -
= ‘
o q00 | L
= oe+oo *°°

300 300 |

200 - 200 |

100 -

0 20 40 60 80 o] 20 40 &0 BO
Pz| |Pz]

%on v jb [818% (Tbéqu(SF)z " % (Tb5£5F)Z] S B 0‘

[ | B L )
I ]

MR
mOm oM



8.3 Gyrokinetic transport theory: general -
approach & reduced models &

Courtesy of Thomas Hayward-Schneider
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Figure 4 Calculation of the orbit average of 6i’¢ produced by a single n = 13 TAE mode for an ITER pre-fusion scenario. The plots on
top left describes for fixed energy E (500 KeV) co-passing and trapped particles, on the top right counter-passing and trapped
particles while plots at the bottom show the structure of the E — A space for fixed P, = —0.2 (left) and in P4 — E space for fixed

A = 0.12. Courtesy of P. Lauber [32]
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