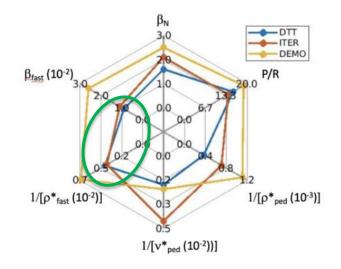


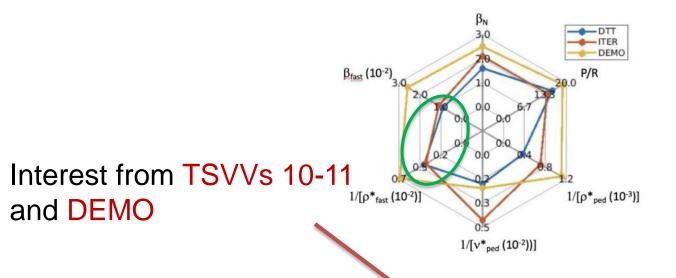
Chapter 8

THEORY AND SIMULATION


M. Falessi, G. Vlad, E. Nardon, G. Brochard, C. De Piccoli, G. Falchetto, M. Gobbin, Y. Kominis, P. Lauber, M. Nocente, M. Salewski, G. Spizzo, P. Vincenzi, F. Zonca, M. Zuin

- Rationale
- Main additions to the chapter
- Scientific Headlines
- Suggestions for next versions of Chapter 8
- Ideas for follow-up of the DTT-RP activity

Rationale of Chap 8



- DTT has been designed to describe the physics of reactor-relevant fusion plasmas;
- reactor-relevant plasmas are a complex system;
- as a result, it gives rise to challenges in the theoretical description of the physics processes;

Rationale of Chap 8

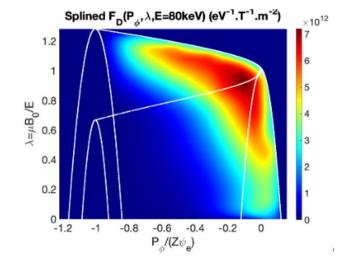
- DTT has been designed to describe the physics of reactor-relevant fusion plasmas;
- reactor-relevant plasmas are a complex system;
- as a result, it gives rise to challenges in the theoretical description of the physics processes;

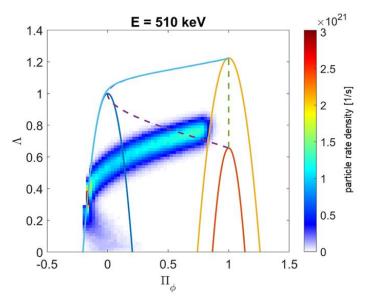
- 8.1 Weak similarity scaling & DTT;
- 8.2 Plasma as a complex system: nonlinear equilibria and self organization;
- 8.3 Gyrokinetic transport theory: general approach & reduced models;
- 8.4 Integration of theory, simulation and experiments;
- 8.5 Novel approaches and open problems

What makes DTT unique?

- 8.1 Weak similarity scaling & DTT;
- 8.2 Plasma as a complex system: nonlinear equilibria and self organization;
- 8.3 Gyrokinetic transport theory: general approach & reduced models;
- 8.4 Integration of theory, simulation and experiments;
- 8.5 Novel approaches and open problems

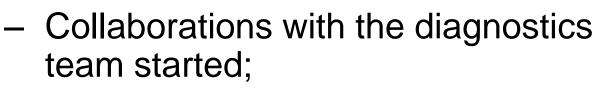
- 8.1 Weak similarity scaling & DTT;
- 8.2 Plasma as a complex system: nonlinear equilibria and self organization;
- 8.3 Gyrokinetic transport theory: general approach & reduced models;
- 8.4 Integration of theory, simulation and experiments;
- 8.5 Novel approaches and open problems

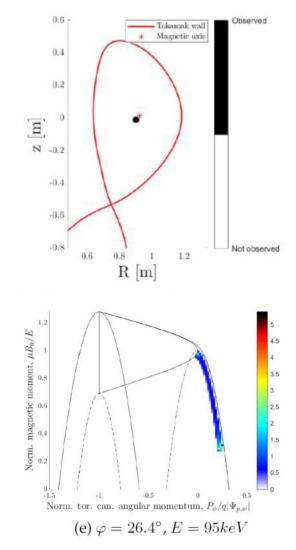

Theoretical challenges in describing the physics of DTT



- Give more emphasis to ITER collaborations;
- give inputs and collaborate with the diagnostics team;
- IMAS infrastructure maintenance and workflows should be included within Chap. 8
- include a set of headlines relatives to the different construction phases;

DTT & ITER collaborations


- We established an important collaboration regarding the representation of the kinetic equilibrium;
- Crucially important for δf and Full-f gyrokinetic simulations of reactor relevant plasmas;
- New sub-sections written with
 G. Brochard, P. Vincenzi, C. de
 Piccoli



- Crucial importance of IMAS infrastructure;
- Collaborations with M. Nocente and M. Salewski on phase space diagnostics for validation of models, e.g. FIDA diagnostics;
- New sub-section on experimental techniques for the reconstruction of 3D phase-space distribution functions;

- A set of headlines has been added;
- we emphasized the importance of early/intermediate phases;

C.1	Verification of Phase 1 scenarios and extended/kinetic MHD modelling with high fidelity theory-based tools. Predict and prepare Phase 1 Experimental programme.	++	Construction	2022- 2029	*	*
C.2	Set up IMAS infrastructure and workflows, e.g. ATEP code	+++				

1.1	Verification of Phase 1 scenarios and extended/kinetic MHD modelling with high fidelity theory-based tools. Predict and prepare Phase 2 Experimental programme.	. + +	Phase 1	2029- 2034	*	*
1.2	Validation of IMAS workflows under Low EP (ICRH) Pressures and Currents and scenario optimization	++				

1.1	Verification of Phase 1 scenarios and		Phase 1	2029-	*	*
	extended/kinetic MHD modelling with high fidelity theory-based tools.	. ++.		2034		
	Predict and prepare Phase 2 Experimental programme.					
1.2	Validation of IMAS workflows under Low EP (ICRH) Pressures and Currents and scenario optimization	++				
2.1	Verification of Phase 2 scenarios and extended/kinetic MHD modelling with high fidelity theory-based tools. Predict and prepare Phase 3 Experimental programme	+++	Phase 2	2034- 2038	*	*
2.2	Validation of IMAS workflows description of new EP transport regimes with NNBI and high current and scenario optimization	++			*	*
2.3	Development of reduced models for describing DTT's full power EP transport	++			*	*

3.1	Verification of Phase 3 scenarios and extended/kinetic MHD modelling with high fidelity theory-based tools. Predict and prepare Phase 3 Experimental programme	+++	Phase 3	2038	*	*
3.2	Validation of IMAS workflows with full power plasmas and scenario optimization	++			*	*
3.3	Development of reduced models for describing DTT's EP transport	++			*	*

 As stated in the rationale this version of the Chapter is mostly focused on the physics of reactor-relevant plasmas; This should change in the next versions;

- As stated in the rationale this version of the Chapter is mostly focused on the physics of reactor-relevant plasmas; This should change in the next versions;
- Edge physics paragraph should be expanded and should become a separate section;

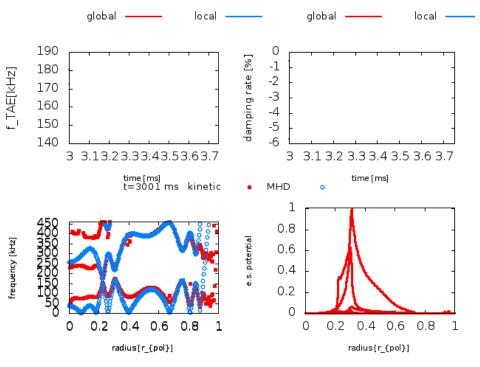
- As stated in the rationale this version of the Chapter is mostly focused on the physics of reactor-relevant plasmas; This should change in the next versions;
- Edge physics paragraph should be expanded and should become a separate section;
- Global gyrokinetic simulations of DTT plasmas should be included and compared to reduced descriptions;

- As stated in the rationale this version of the Chapter is mostly focused on the physics of reactor-relevant plasmas; This should change in the next versions;
- Edge physics paragraph should be expanded and should become a separate section;
- Global gyrokinetic simulations of DTT plasmas should be included and compared to reduced descriptions;
- The advanced transport descriptions introduced should be applied to DTT Phase 1, Phase 2 and Phase 3 plasmas;

- As stated in the rationale this version of the Chapter is mostly focused on the physics of reactor-relevant plasmas; This should change in the next versions;
- Edge physics paragraph should be expanded and should become a separate section;
- Global gyrokinetic simulations of DTT plasmas should be included and compared to reduced descriptions;
- The advanced transport descriptions introduced should be applied to DTT Phase 1, Phase 2 and Phase 3 plasmas;
- More interaction with the diagnostic team is required. This section should be expanded;

 First collaborations have been made on voluntary basis. We need to find a way to pay for PMs coming from institutions outside the SCARL;

- First collaborations have been made on voluntary basis. We need to find a way to pay for PMs coming from institutions outside the SCARL;
- Chapter 8 should be more interlinked with other chapters;
- A set of topics where important theory developments and/or understanding is required should be mentioned throughout in the RP;



Thank you for your attention!

8.4 Integration of theory, simulation and experiments

- Importance of building an infrastructure to verify and validate reduced models on DTT;
- role of IMAS infrastructure;
- Ligka-Hagis EP workflow, synthetic diagnostics;

Backup

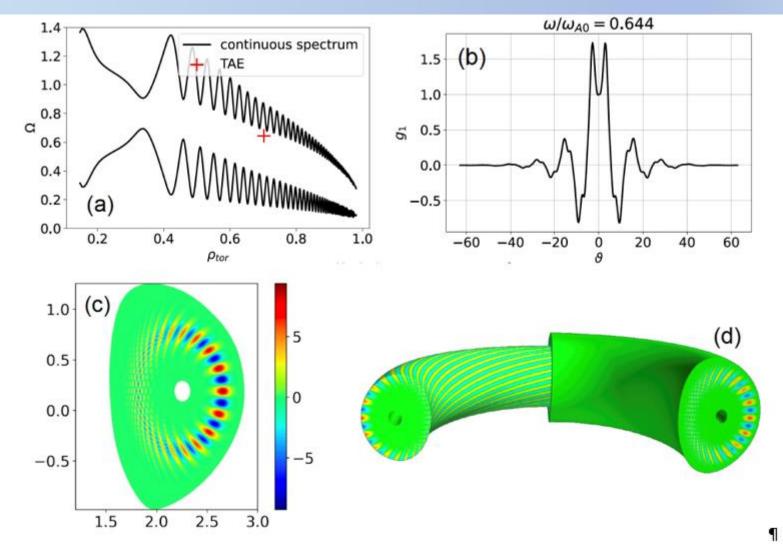
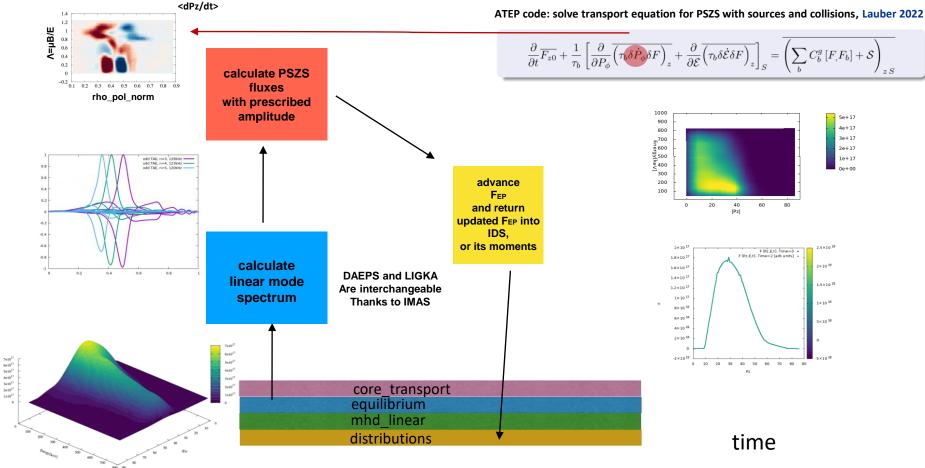
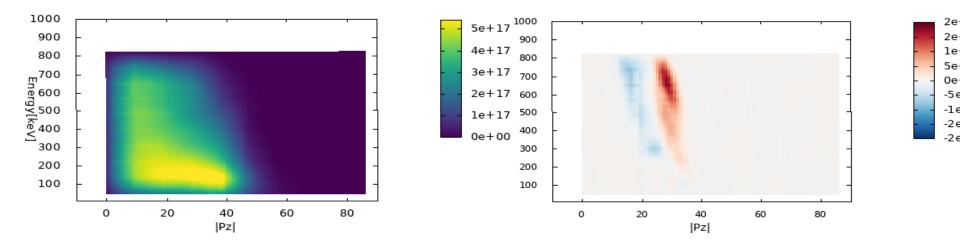



Figure 3 (a) Continuous spectrum (n=20) and location of TAE in DTT; (b) normalized parallel mode structure of the magnetic stream function at ρ_{tor} =0.702; 2D (d) 3D mode structure (n=20) obtained with an ad-hoc radial envelope. Courtesy of G. Wei [G. Wei 2024].

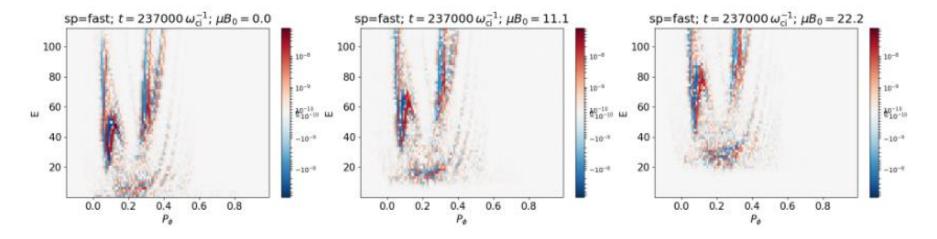
8.4 Integration of theory, simulation and experiments



8.4 Integration of theory, simulation and experiments

F (Pz,E,t), Time=2 [arb units]

F(t) - F(t-1), Time=2 [arb units]


CNPS

$$\frac{\partial}{\partial t}\overline{F_{z0}} + \frac{1}{\tau_b} \left[\frac{\partial}{\partial P_\phi} \overline{\left(\tau_b \delta \dot{P}_\phi \delta F\right)_z} + \frac{\partial}{\partial \mathcal{E}} \overline{\left(\tau_b \delta \dot{\mathcal{E}} \delta F\right)_z} \right]_S = 0$$

8.3 Gyrokinetic transport theory: general approach & reduced models

Courtesy of Thomas Hayward-Schneider

$$\frac{\partial}{\partial t}\overline{F_{z0}} + \frac{1}{\tau_b} \left[\frac{\partial}{\partial P_\phi} \overline{\left(\tau_b \delta \dot{P}_\phi \delta F \right)_z} + \frac{\partial}{\partial \mathcal{E}} \overline{\left(\tau_b \delta \dot{\mathcal{E}} \delta F \right)_z} \right]_S = 0$$

Backup

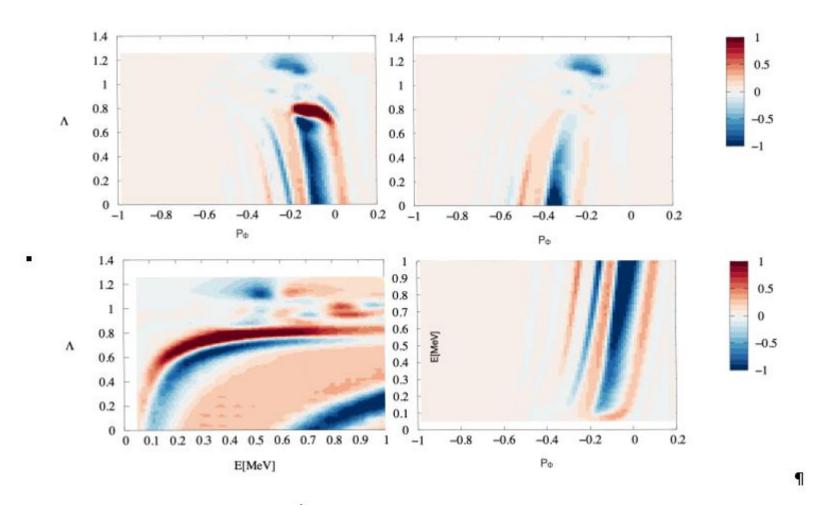


Figure 4 Calculation of the orbit average of $\delta \dot{P}_{\phi}$ produced by a single n = 13 TAE mode for an ITER pre-fusion scenario. The plots on top left describes for fixed energy E (500 KeV) co-passing and trapped particles, on the top right counter-passing and trapped particles while plots at the bottom show the structure of the $E - \Lambda$ space for fixed $P_{\phi} = -0.2$ (left) and in $P_{\phi} - E$ space for fixed $\Lambda = 0.12$. Courtesy of P. Lauber [32]¶