

Chapter 2 **PLASMA SCENARIOS**

P.Mantica, C.Angioni, F.Auriemma, N.Bonanomi, A.Castaldo, M.Cavedon, I.Casiraghi, A.Mariani, G.Rubino

> DTT-RP 4TH in-person meeting Frascati, 6-8 May 2024

DTT Consortium (DTT S.C.a r.l. Via E. Fermi 45 I-00044 Frascati (Roma) Italy)

2.1 Introduction

Plasma

scenarios

- 2.2 DTT heating phases
- 2.3 Electromagnetic configurations achievable in DTT
- 2.4 Scenarios accessible in the different heating phases
- 2.5 Designing the full time evolution of a DTT scenario
 - 2.5.1 Available electromagnetic flux swing
 - 2.5.2 Break-down

P.Mantica

2.5.3 Ip ramp-up, flat-top and Ip ramp-down

2.6 Time dependent simulations of DTT baseline scenarios using first principle transport models

2.6.1	Simulation methodology		
2.6.2	Scenario E SN baseline		
2.6.3	Scenario A SN baseline		
2.6.4	Scenario C SN baseline moved to Appendix C		
2.6.5	Scenario E half field/half current high β_N		
2.6.6	Comparison of DTT flat-top parameters with ITER and DEMO		

DTT-RP 4th in-person meeting

INDEX

2.7 ELMs in DTT scenarios and small ELMs/ ELM-free scenarios

- 2.7.1 ELMs in DTT full power baseline H-mode
- 2.7.2 EDA H-mode regime
- 2.7.4 QCE regime
- 2.7.5 XPR-CRD scenarios
- 2.7.6 I-mode regime
- 2.7.7 QH and WPQH
- 2.8 Alternative scenarios to H-mode baseline
 - 2.8.1 Hybrid scenarios
 - 2.8.2 Advanced scenarios
- 2.9 Negative triangularity scenarios
- 2.10 References

Total pages : 21 (+8 appendix)

Rationale of Ch.2

- Recalls the time sequence of DTT heating phases and defines the nomenclature of the scenarios achievable in each phase, identifying possible regimes of operation
- Discusses how to build the various phases of a plasma discharge, consistently with electromagnetic constraints (METIS)
- Shows the time dependent 4 baseline scenarios E, A, C, E half BT simulated with ASTRA and first principle transport models
- Shows first calculations of ELM properties and discusses achievability of small ELMs/ELM free scenarios
- Discusses the possibility of investigating alternative scenarios to baseline
- Discussed expectations for negative triangularity scenarios

New subsections

QH, WPQH

In DTT a standard QH is probably impossible to achieve, due to the required high rotation.

A WPQH may be achievable at very small NBI torque. The coherent EHOs that usually regulate the QH edge disappear and a rapid increase in the pedestal pressure height and width occurs.

Adding core ECRH improves the WPQH performance.

Advanced scenarios

Advanced tokamak scenarios, with high fractions of non-inductive current, can be achieved at half B_T and low I_p .

OD estimates conservatively assuming H = 1, with stored energy provided by the average between the IPB98(y,2) and the ITPA20-IL scaling laws. I_{CD} [kA] = 100 P_{CD} / n_{el} .

At 1.5 MA and f_{GW} ~0.5 fully non-inductive operation should be possible.

Headlines

Headline	Headling contents	Priority	ITER	DEMO			
number	Headline contents	(+, ++, +++)					
Construction Phase 2022-2029							
C.2.1	Definition of the central solenoid desired capabilities	+++					
C.2.2	Carry out integrated modelling of scenarios alternative to baseline H-mode	++	*	*			
Phase 1 2029-2034							
1.2.1	Development of baseline L-mode and H-mode scenarios A, B, C in SN or XD divertor configuration	+++	*	*			
1.2.2	Development of Negative Triangularity scenarios	+++		*			
1.2.3	Development of Hybrid scenarios at half power	++	*	*			
1.2.4	Development of high b_N AT scenarios at half field, half power	++	*	*			
1.2.5	First studies of small/no ELMs regimes	++	*	*			
Phase 2 2034-2038							
2.2.1	Improvement of all phase 1 scenarios at higher power	+++	*	*			
2.2.2	Development of small/no ELMs scenarios	+++	*	*			
Phase 3 2038							
3.2.1	Optimisation of all phase 1 and 2 scenarios at full power	+++	*	*			
3.2.2	Optimisation of small/no ELMs scenarios at full power	+++	*	*			

How to develop the content of the chapter for the next versions

- only simulations for SN baseline scenarios have been made so far
- present plan is to continue work on NT scenarios and try Hybrid scenarios
- however may be priority to be given to AT scenarios doable in phase A or B?

Ideas about the follow-up of the DTT-RP activity (work method, proposals of experiments on other tokamaks, code and simulation developments etc.)

- more substantial involvement of people in EU outside Italy, but funding is scarce also for present team, difficult to ask for voluntary work

- collaborations are being made with China, South-Korea, USA: how to involve in RP?

- code and simulation development: make use of progress made in EUROfusion on integrated modelling. More work on IMAS and simulation database should be done within DTT.

Discussion

- Mismatch found regarding NT configurations described in SOL chapter:
 - SOL → reverse BT suggested as the only viable (why? It could remain L also in forward BT)
 - PLS → forward BT used (reverse not advisable due to NBI orbit losses? Do we need to reverse also Ip?)
- Others?