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Abstract 

 
Proton-boron fusion is experiencing a renewed interest as a possible energy source. The reaction         
(p + 11B → 3α + 8.6 MeV) is aneutronic and does not involve radioactive or rare isotopes. Ignition 
and burn of H-11B fuel, however, remain extremely challenging at present, because of severe physics 
and technology limitations [1-3]. Ideal ignition has been demonstrated only lately (and marginally) 
[4], thanks to recent cross section data [5] and the inclusion of suprathermal fusion reactions. 
We have revisited the findings on ideal ignition [6], in the light of the latest available reactivity [7], 
an alternative self-consistent calculation of the electron temperature, an increased extent of the 
suprathermal effects and the impact of plasma density. At high density, we find that the ideal ignition 
temperature is appreciably relaxed (e.g. 𝑇௜ ≃ 150 keV for 𝑛௜ ∼ 10ଶ଺ cmିଷ and an optimal 11B/H 
concentration 𝜀 = 0.15) and burn becomes substantial.  
We then report analytic results on central hot-spot ignition in both isobaric and isochoric inertial 
confinement configurations. Although implosion-driven ignition appears to be unfeasible, the 
isochoric self-heating conditions foster favourable preliminary conclusions on the utilization of 
proton fast ignition. In the isochoric case, we find a broad minimum in the ignition energy at 𝜌𝑅 ≃
8.5 g/cmଶ and 220 ≲ 𝑇௜ ≲ 340 keV (80 ≲ 𝑇௘ ≲ 95 keV), for 𝜀 = 0.15. In addition, we briefly 
present laser driver requirements for the target implosion and the proton ignitor. Finally, we outline 
target design requirements. 
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Abstract 

 
Experiments with deuterium fill gas have demonstrated that ion energies >200 keV, relevant to pB11 
fusion, can be obtained in a dense plasma focus (DPF) device. These observations have motivated 
LPPFusion’s preparations, starting in 2023, for tests of isotopically pure decaborane (B10H14) as a 
fill gas in the FF-2B DPF. In preparing for the decaborane tests, we redesigned the spark gap switches 
on the device, reducing their inductance and increasing peak current by over 50% to nearly 2 MA. 
Tests with deuterium and the new switches demonstrated the need to redesign the beryllium 
electrodes in order to improve the durability of the anode and to reduce the number of filaments in 
the current sheath. This reduction in the number of filaments was needed to increase the current in 
each filament to allow the filaments to survive to the end of the rundown. This is expected to greatly 
increase the density of plasma in the plasmoid formed by the pinch forces in the device. In addition, 
we have optimized the preionization system to ensure a symmetrical breakdown and compression. 
We report here on the initial tests of these improvements with decaborane as the fill gas. 
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Abstract

The FUSION (FUsion StudIes of prOton boron Neutronless reaction in laser-generated plasma)
project was initiated in 2022 by researchers from INFN (Istituto Nazionale di Fisica Nucleare, Italy)
and ENEA (Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico
sostenibile) with the objectives of developing a new generation of solid targets (WP3) to enhance
the p(11B, ɑ)2ɑ reaction rates (WP1), designing innovative diagnostic approaches (WP4) for the
measurement of reaction products, and, finally, determining the stopping powers of alpha particles
and protons in a plasma environment (WP2). Two experimental campaigns focused on studying the
p(11B, ɑ)2ɑ reaction in plasma using the developed targets and advanced diagnostic methods are
planned at the Prague Asterix Laser System (PALS) facility with the Asterix laser. The first
campaign, incorporating the targets and diagnostic techniques developed as part of the FUSION
project, concluded in March 2024. Experiments on the stopping power of protons and alpha
particles in plasma will be conducted by generating a plasma with a nanosecond laser pulse and
studying the interaction of a conventional proton/alpha beam with it. The protons and alpha
particles will be produced using a Singletron accelerator available at the University of Catania. The
FUSION project involves the participation of ten INFN sections and three external scientific
partners, including ELI-beamlines, HILASE, and PALS in the Czech Republic.
The primary objectives of the FUSION project are to gain a deeper understanding of the p(11B)
reaction and to optimize it for maximum alpha yield, particularly with the new generation of
high-repetition-rate laser systems. This work will present and discuss the current status of the
FUSION project and its main achievements from the experimental campaigns.
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Abstract 

 
We present the latest results from our studies of the proton-boron burn space for ICF in an attempt to 
identify regions where sufficient gain could be achieved to enable a practical power reactor. A 
fundamental principle of ICF is to limit the size of the driver by heating a limited amount of fuel such 
that it ignites and propagates the burn into adjacent cold fuel that is highly compressed on a low 
adiabat. Results from 0-D power balance studies have identified ignition regions for isobaric and 
isochoric pB11 plasma configurations having high initial values of density, temperature, and rR [1]. 
We are also developing more advanced 0-D burn models, as well as performing 1-D simulations 
using the HELIOS radiation hydrodynamics code [2]. The main topic of this talk is a preliminary 
analysis of the energy and power that are required to heat the regions used as initial conditions in the 
0-D and 1-D models. We use the measured parameters from NIF shot N210808 (near ignition) as a 
benchmark for comparing the requirements for a burning plasma DT vs pB11. As found in the 0-D 
scaling, pB11 ignition requires compressing to >1000X solid density and heating the plasma to 100-
300 keV, which is impossible via hot-spot ignition. We present an initial analysis of the beam 
parameters required to achieve these conditions via proton fast ignition from analytic estimates, 
hybrid-kinetic simulations using CHICAGO, and preliminary 1-D HELIOS simulations of beam-
target interactions. The results from preliminary simulations of burn propagation using the hybrid 
TriForce Code are discussed in a companion talk at this meeting [3]. 
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Abstract 

 
We present a generalised 0D model for studying the hotspot evolution of a pre-compressed and pre-
heated ICF fuel target. It is assumed that the spherical hotspot is surrounded by cold, dense fuel in an 
initially isobaric configuration. Following the methodology developed by Atzeni and Caruso [1], this 
model simulates the initial deflagration stage of burn propagation, driven by alpha deposition and 
electron conduction into the shocked region. The ion and electron power balance equations account 
for relativistic effects in the bremsstrahlung energy loss [2] and ion-electron energy exchange terms 
[3]. Fusion alphas are assumed to deposit their energy instantaneously, and the energy deposition 
fractions to hotspot ions, hotspot electrons and shocked fuel are calculated with consideration of both 
the target geometry and stopping power. For this we use the latest parameterisation of the Li-Petrasso 
charged particle stopping power theory [4]. Reaction kinetics and suprathermal effects are also 
accounted for when simulating the hotspot. This model has been validated in the context of DT and 
correctly predicts the critical ignition conditions. Simulations of pB11 show evidence of evanescent 
burn, but not self-sustaining burn propagation. Even at conditions for ion self-heating, the ion-
electron exchange term quickly increases the electron temperature so that bremsstrahlung losses 
dominate. A fuel gain exceeding unity has been demonstrated with boron-to-proton ratio ε = 0.2, 
hotspot temperature Th > 200 keV and areal density ρR > 3 g/cm2.  However, a target design with a 
commercially relevant gain that considers engineering losses remains elusive. 
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Abstract 

Nanostructured targets are capable of efficient energy absorption of ultra-intense laser radiation, 
resulting in high laser energy conversion into high-ion kinetic energy. This aspect makes them an 
attractive option for the implementation of a laser-driven fusion concept using a fuel mix of pB and 
DT. As a potential realization of targets, Marvel Fusion envisions arrays of high-aspect-ratio aligned 
nanowires capable of efficiently generating high fluxes of fast ions with a tunable spectrum in the 
MeV range, a concept referred to as Nano Accelerator (NA) [1]. Ultra-intense (I > 1020 W/cm2) and 
high temporal contrast (< 10-10) lasers are essential to provide high laser energy deposition and 
prevent early-stage ionization of nanostructured targets. The Extreme Light Infrastructure for Nuclear 
Physics (ELI-NP) hosts one of the most powerful lasers worldwide, capable of delivering 10 PW laser 
pulses, and with inherent ultra-high laser contrast, characteristics that make it the ideal facility for 
testing and developing the NA concept. 
Within a collaboration with ELI-NP and Thales, Marvel Fusion has recently started a series of 
experimental campaigns for the Operation of a Direct drive high Intensity Nano accelerator (ODIN) 
at 10-PW-level at ELI-NP. Here we present the experimental platform deployed in the E6 chamber 
at ELI-NP and the results obtained. The platform consists of a core system capable of flexibly hosting 
various kinds of targets at different laser incidence angles. A high-power diagnostic has been 
implemented to characterize the on-shot 10 PW focus and target transmission. Combined with the 
evaluation of target specular reflection, these measurements are essential to determine the total energy 
absorbed by the targets. Moreover, a set of particle diagnostics, including 4x Thomson Parabolas, 4x 
electron spectrometers, an ion time-of-flight detector, and several filtered CR-39s, were deployed at 
different angles to characterize the particle spectral distributions, showing efficient energy transfer 
from the laser to the ions in our NA. 
The ODIN platform allows for a full characterization of the coupling between the 10 PW laser pulse 
and the NA target at 10-shot rate per vacuum cycle, enabling us to evaluate the performances of such 
targets in the prospect of fusion generation. 
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Abstract 

The interaction of high-intensity laser pulses with near-critical-density materials enables efficient 
absorption of laser energy, which consequently leads to its conversion to high-energy particles and 
radiation. However, scaling this process to laser powers of multi-PW and beyond requires careful 
consideration of the laser propagation in the material, as local electron-density inhomogeneities can 
lead to uncontrolled laser modulations that prevent sustaining an efficient conversion process within 
larger volumes. A solution to this problem is to use ordered nanostructured arrays with sub-
wavelength features; a system dubbed as a Nano Accelerator1. In such targets, a homogeneous 
electron density is maintained across the target while avoiding destructive laser modulations 
throughout the absorption process in the interaction volume. This consequently leads to an efficient 
absorption of the laser energy and its conversion to high-current ionic beams in a controlled manner. 
In the future, this technology may allow scaling the process to exawatt-class lasers to produce high 
ion currents for fusion-energy power plants and other applications.  
 
In this contribution we will present the first demonstration of the Nano Accelerator driven by 10 PW 
laser pulses. Experiments were conducted with the HPLS laser at the Extreme Light Infrastructure 
for Nuclear Physics (ELI-NP), which was operated at approximately 200 J of energy on target at a 
pulse duration of 23 fs. The original focusing geometry was modified from F/60 to F/20 leading to 
intensities of approximately 5x1020 W/cm2. For this initial demonstration, structured, high-aspect-
ratio (length vs. diameter), nanowire arrays of various geometries were investigated, including arrays 
with wire diameters down to 50 nm and lengths beyond 20 µm. With an inter-wire spacing of 800 nm 
and above, the average relativistic electron density was kept to near-critical values. By monitoring 
the specularly reflected laser light and capturing the ion spectra via Thomson Parabola & CR-39 
spectrometers we demonstrate an efficient conversion of laser energy to high-energy ions. In addition, 
we show the possibility of controlling the emitted ion spectra by varying the nanostructure 
parameters. Finally, we will discuss prospects of using the Nano Accelerator towards driving targets 
containing mixed fusion fuels for energy production 
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Abstract 

 
In inertial confinement fusion, pure deuterium-tritium (DT) is usually used as a fusion fuel. However, 
as pure DT is a gas at room temperature, this requires cryogenic technology with significant 
associated costs. In their paper [1], Guskov et al. suggest using low-Z compounds that contain DT 
and are non-cryogenic at room temperature. They showed that these fuels (here called non-cryogenic 
DT) can be ignited for ρDTR ≥ 0.3 g cm−2 and kTe ≥ 14 keV, i.e., parameters which are about 
threefold higher but still in the same order of magnitude as those for DT. In deriving these results the 
authors in [1] assume that ionic and electronic temperatures are equal and consider only electronic 
stopping power. Here show that at temperatures greater than 10 keV, ionic stopping power is not 
negligible compared to the electronic one. We demonstrate that this necessarily leads to higher ionic 
than electronic temperatures. Both factors facilitate ignition compared to the model used in [1] 
showing that non-cryogenic DT compounds are more versatile than previously known. In addition, 
we find that heavy beryllium borohydride ignites more easily than BeDT. Our results are based on an 
analytical model that incorporates a detailed stopping power analysis, as well as on numerical 
simulations using a version of the community hydro code MULTI-IFE. Simulating a kicked tamper 
scenario consisting of high-Z material radially compressing the fuel, we furthermore show that non-
cryogenic DT fuels are capable of producing high gain at external energy levels much lower than 
those predicted in [1]. Alleviating the constraints and costs of cryogenic technology and the fact that 
non-cryogenic DT fuels are solids at room temperature opens up new design options for fusion targets 
and thus contributes to the larger goal of making inertial fusion energy an economically viable source 
of clean energy. In addition, the discussion presented here generalizes the analysis of fuel mixes for 
energy production. 
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Abstract 

 
The neutron-free p11B fusion reaction generates three (3) iso-energetic alpha particles with 8.7 
MeV total energy, that can be converted into electricity without passing through a thermodynamic 
cycle [1, 2]. However, the up today alpha particle measurements from non-thermal p11B fusion 
experiments [3, 4, 5, 6], with a record of ≈ 1011 alpha particles per laser shot [7], haven’t 
demonstrated break-even ignition{Q = (Pfus / PBrems) = 1}. In this context and according to the 
theoretical and numerical works of [8, 9, 10], a self-sustained p11B fusion ignition (Q > 1) may be 
attributed to the chain reactions effect and the related avalanche alpha heating effect. The latter 
effects concern the heating of the fusion medium and the generation of an alpha particles avalanche, 
through the rise of the p, 11B species temperatures, within the optimal reactivity region (300 keV < 
T ≤ 700 keV) [8, 9, 10]. A self-consistent multi-fluid global particle and energy balance code [10, 
11], with collisions between all medium species and Bremsstrahlung radiation losses, enables the 
temporal description of the fusion medium physical parameters. Bremsstrahlung losses are 
optimized, considering density ratios between the p, 11B species (ε = np / nB >1) [1, 10, 12, 13, 
14]. According to our previous work [15], a low – density, fully ionized p11B medium {n = 1020 m 
-3 , (np / nB) >1}, may be ignited (1 ≤ Q ≤ 1.25) in the initial temperature range of 130 keV ≤ Tin ≤ 
400 keV [10], as a consequence of the avalanche effect manifestation at a lower bound of alpha 
particle production. The present numerical study uses the same model with [10, 11] and investigates 
the potentiality of the obtainment of enhanced low-density ignition conditions (Q > 1.25), below 
Tin < 100 keV. For this purpose, two (2) medium configurations are considered, referring to the 
injection of energetic protons (100 keV ≤ Ep,0 ≤ 700 keV) in a p11B or a 11B medium with density 
ratios: (np / nB) > 1 and initial temperature in the range of: 1 keV ≤ Tin ≤ 400 keV. The proposed 
configurations could be classified as “hybrid”, similar to those presented in [16]. The numerical 
results show ignition below Tin < 100 keV and optimum ignition conditions up to Q ~ 1.4, as a 
direct consequence of the triggering of the avalanche alpha heating effect, by the energetic protons. 
The proposed initial plasma temperature conditions and the generation of energetic protons are 
feasible to be achieved with the currently existing laser-based technologies [e.g. PW laser of ELI - 
Romanian pillar]. 
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Abstract 
 
 Fast ignition by laser-driven ion beams [1] of proton-boron plasmas offers a possible path 
towards clean fusion energy. This process consists of two primary stages: first, an isochoric high-
density plasma is assembled by spherical compression; then, an ion beam strikes the target increasing 
the temperature of the compressed plasma to fusion relevant conditions. In this presentation, we 
investigate the conditions that must be achieved in the second stage of a fast-ignition experiment to 
ignite the target using a particle-in-cell code with Monte Carlo collisions (PIC-MCC) [2]. The PIC-
MCC approach allows us to study the kinetic physics present in the release of the fusion hot-spot such 
as non-local transport and non-thermal velocity distributions. In addition to simulating Coulomb 
collisions and fusion reactions, we model bremsstrahlung emission and inverse bremsstrahlung 
absorption. Radiation is particularly important to include in studying these systems because radiation 
emission increases with atomic number, density, and temperature as (Zn)2T1/2. For a configuration 
with an ion ratio nB/np=0.2, an initial density of 1000 g/cc, a hot-spot temperature of 200 keV, and 
surrounding plasma of 10 eV, the model predicts that the radiation emitted by the hot-spot is re-
absorbed by the surrounding fuel heating it up to 30 keV within 20 ps. This reduces the amount of 
work that the expanding hot spot must do on the plasma to heat it to ignition conditions. 
 

 
Figure 1. Density and temperature profiles at 15 ps of a 200 keV hot-spot expanding into an initially 10 eV plasma at 
1000 g/cc. The ion temperature has increased by a factor of two in the hot region by fusion heating and by a factor of 

1000 in the cold region by inverse bremsstrahlung absorption. 
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Abstract 
 
Our previous numerical results for a low density p11B fusion medium (n ~ 1020 m -3 ) show 
ignition: 1 ≤ (Pfus / PBrems) ≤ 1.3, in the relatively high initial temperature range: 150 keV ≤ Tin ≤ 
350 keV [1, 2, 3, 4, 5], as a consequence of Bremsstrahlung losses optimization {(np / nB) > 1}, 
and the avalanche alpha heating effect [6, 7, 8, 9]. The important fusion species temperature rise 
occurs in time, when the produced alpha particle density is approximately two (~2) orders of 
magnitude lower, than the total initial medium density. Configurations based on the injection of 
energetic protons or alpha particles [3, 4, 10] in a low - density p11B medium enable enhanced 
fusion ignition below Tin ≤ 100 keV. The main challenges in low - density fusion - oriented 
configurations are: (1) The p11B medium maximum volume for the obtainment of a significant 
output power, (2) The density of the injected energetic species (protons or alphas) and (3) The 
ignition of the medium at the lowest possible initial temperature (~1 -10 keV). Laser beams are 
capable to produce high energy species with relatively low densities, to be used in big fusion 
volumes. In the current work, we investigate through numerical simulations, a new low - density 
p11B plasma configuration, that may enable fusion ignition from a relatively low initial temperature 
(~10 keV), compared to the high initial medium temperatures of [11, 12, 13, 1]. In the proposed 
configuration, the low - density fuel mixture (n ~ 1020 m-3 ) is composed by p11B and D-T or 
(D3He), with appropriate density ratios. The nuclear fuels of D-T and D3He require relatively 
lower energies for fusion ignition, compared to the p11B nuclear fuel and produce energetic 
particles, that may transfer their energy to the low - temperature (p, 11B) fusion species. Thus, the 
main idea is to ignite a low - temperature [(p11B) – (D-T)] medium and achieve high p, 11B fusion 
species temperatures, through the energetic alpha heating from D-T in the whole medium volume. 
This means that, D-T (or D3He) will work as a booster, just for the first step of ignition of the low - 
temperature p11B medium (Tin ~ 10 keV). Continuous injection of low temperature p - 11B species 
will allow the sustainment of the fusion burn. The results are obtained by a multi-fluid code, 
including collisions between all the species and Bremsstrahlung losses [14, 1]. The simulations 
show that, for the initial fuel mixture temperature of Tin ~ 10 keV, the maximum D-T reactivity 
appears, before the observation time of the maximum p,11B fusion species temperatures. Thus, the 
high – density D-T fusion generated energetic alphas (Eα,0 = 3. 5 MeV), transfer their energy to the 
p, 11B fusion species, increasing their temperature, within the optimum p11B reactivity region (). 
At the time of the maximum fusion species (p, 11B) temperatures, the D-T fuel is depleted and the 
remaining high - temperature fluids (p, 11B and alphas) have the capability to burn the refueled low 
- temperature p11B medium. Similar numerical results are obtained, using D3He in the fuel 
mixture, with the advantage of no - neutron generation (neglecting the low neutron production from 
the secondary DD reaction). 



 
[*] Acknowledgement: This work has been carried out within the framework of the COST Action CA21128- PROBONO 
“PROton BOron Nuclear fusion: from energy production to medical applications”, supported by COST (European 
Cooperation in Science and Technology - www.cost.eu). 
 
 
References  
[1] S. Moustaizis, C. Daponta, S. Eliezer, Z. Henis, P. Lalousis, N. Nissim and, Y. Schweitzer., “Alpha heating and 
avalanche effect simulations for low density proton-boron fusion plasma”, Journal of Instrumentation, JINST 19 C01015, 
2024. [2] S. Moustaizis, C. Daponta, S. Eliezer, Z. Henis, P. Lalousis, N. Nissim and, Y. Schweitzer, “Alpha heating 
contribution to the different stages of the p11B fusion process and the temporal appearance of the avalanche effect”, Oral 
presentation at CHILI2022 in Israel, 5-8 December 2022. [3] S. D. Moustaizis et al., 42nd European Conference on 
Plasma Diagnostics, Rethymnon, Crete, 24-27 April 2023 [4] C. Daponta, S. Moustaizis, S. Eliezer, Z. Henis, P. Lalousis, 
N. Nissim and, Y. Schweitzer et al. “Simulations on the contribution of avalanche effect to gain generation from p-11B 
fusion, Oral presentation, Proceedings of the EPS 2023, Bordeaux July 2023 [5] S. Moustaizis C. Daponta, S. Eliezer, Z. 
Henis, P. Lalousis, N. Nissim and, Y. Schweitzer, “Gain enhancement of the p11B fusion process by energetic alpha 
injection, Poster presentation, at the EPS 2023 Conference, Bordeaux July 2023. [6] S. Eliezer, H. Hora, G. Korn, N. 
Nissim, and Jos!` Maria Martinez-Val, “Avalanche proton-boron fusion based on elastic nuclear collisions”, Physics of 
Plasmas, vol. 23, p. 050704, 2016 [7] F. Belloni, “On a fusion chain reaction via super thermal ions in high-density H–
11B plasma”, Plasma Phys. Control. Fusion, vol.63, no.5, p. 055020, 2021 [8] F. Belloni, D. Margarone, A. Picciotto, F. 
Schillaci, and L. Giuffrida, “On the enhancement of p-11B fusion reaction rate in laser-driven plasma by a→p collisional 
energy transfer”, Physics of Plasmas, vol.25, no. 020701, 2018. [9] N. Nissim, Z. Henis, C. Daponta, S. Eliezer, S.D 
Moustaizis, P. Lalousis and, Y. Schweitzer, “Parametric scan of plasma parameters for optimization of the avalanche 
process in p11B fusion”, Oral Presentation in the 2nd International Workshop on proton-Boron fusion, Catania, Sicily, 
5-8 September 2022 [10] T. J. Melhorn et al. “Path to Increasing p-B11 Reactivity via ps and ns Lasers”, Laser and 
Particle Beams Volume 2022, Article ID 2355629, 2022 [11] D. C Moreau, Nuclear Fusion, vol. 17, no. 13, pp. 13-20, 
1977 [12] S. V. Putvinski et al., Nuclear Fusion, vol. 59, no.7, p.076018, 2019 [13] T. J. Melhorn, Oral presentation in 
the 2nd International Workshop on Proton-Boron Fusion, Catania, Sicily, 5-8 September 2022 [14] P. Lalousis, “Alpha 
heating in magnetic and inertial confinement fusion”, EPS Conference, 2016 



 
 

Hydrogen- and boron-rich materials, with special focus 
on ammonia borane NH3BH3 

 
U.B. Demirci1 

 
1 Institut Européen des Membranes, IEM – UMR 5635, ENSCM, CNRS, Univ Montpellier, Montpellier, France 

 
Abstract 

 
In the early 2000s, sodium borohydride NaBH4 (with 10.8% wt% H) was rediscovered for its potential 
to store and produce hydrogen on demand [1]. This marked the beginning of a renewed interest in 
hydrogen- and boron-rich materials, especially as hydrogen carriers. By the mid-2000s, ammonia 
borane NH3BH3 (AB), perhaps the most well-known example, was rediscovered [2]. Isoelectronic to 
ethane, it is solid at room temperature due to the presence of dihydrogen bonds and contains 19.6% 
hydrogen by mass. This was followed by the emergence of metal amidoboranes, hydrazine borane 
and its derivatives, mono- and bi-metallic borohydrides, and polyboranes (or boron clusters) [3]. 
These materials have had varying degrees of success in the field of hydrogen storage, and the less 
promising candidates have been investigated for other applications, such as liquid fuel for fuel cells 
or solid electrolytes for metal-ion batteries.  

Since 2007, our research activities have been focused on this area. We have studied all of these 
materials, and more recently, we have directed our efforts towards amine boranes with carbon chains 
RNH2BH3 (R = CxHy) with two objectives in mind [4]. The first concerns their use as surfactants for 
the nanostructuring of AB (Figure 1), and the second aims to use them as precursors for porous boron 
carbonitride ceramics [5]. The targeted applications remain hydrogen storage, but also the storage of 
gases such as carbon dioxide or ammonia, with the ultimate goal of developing gas purification 
membranes. 

The 4th International Workshop on Proton Boron Fusion is therefore a great opportunity to present 
an overview of our research activities focused on hydrogen- and boron-rich materials, with AB and 
our recent work on its nanostructuring as the central theme. 
 

 
Figure 1. Towards the nanostructuration of AB (unpublished data for the SEM images in the center and on the right). 
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Abstract 

 
Boranes in general, and in particular Ammonia Borane (AB), H3BNH3, have been proposed [1] as 
nuclear-fusion fuel-material for laser-targets for direct, or ‘in target’ laser-driven Proton-Boron (P-
B) [2] fusion reactions: 1 1H + 11 5B = 3 x 4 2He + 8.7 MeV/fusion reaction. This is because solid 
AB contains both fusion nuclei: Boron and Hydrogen, while storing even higher H concentration than 
liquid Hydrogen. First experiments with laser-driven AB fusion [3] have already generated a 
normalized Alpha-particle flux equalling record fluxes obtained with other types of target materials 
[2]. Ref. [1] has proposed to use laserdriven AB-targets to generate tabletop Ion Sources (Alpha and 
Proton) for applications such as isotope fabrication. AB as well as Diborane, B2H6, fusion fuels could 
also be considered for fuelling future ProtonBoron Fusion Energy Reactors [1]. Heavy- AB, see 
below, was already considered a potential fuel for Deuterium-Tritium Fusion Energy Reactors [4], 
and we also propose Heavy-Diborane as future DT or DD fusion fuel. Indeed, the number density of 
DT is over two times higher in solid Heavy-AB at normal temperature than in solid cryogenic DT 
fusion fuel. We now propose to extend our studies of AB nuclear-fusion fuel-materials for laser-
targets to ‘Heavy AB’ in which the Hydrogen atoms are replaced by Deuterium (D) or even Tritium 
(T): D3BND3 for DD fusion (2 1D + 2 1D = 3 1T + 1 0p + 4 MeV/fusion or 2 1D + 2 1D = 3 2He + 
1 0n + 3.3 MeV/fusion) or even D3BNT3 for DT fusion ( 2 1D + 3 1T = 4 2He + 1 0n +17.6 
MeV/fusion). We would like to compare the ion fluxes emitted AB and Heavy-AB identical targets 
when irradiated by laser in identical conditions. We expect even higher nuclear-fusion-yield from 



 
laser-irradiated Heavy-Hydrogen-AB than from AB because the fusioncrossections are higher at 
same kinetic energies of fusing particles. Heavy-Hydrogen fusion generates neutrons which escape 
the fusion-target and can be measured exactly, unlike Alpha particles from ProtonBoron fusion. 
Therefore, one could better characterise experimentally, the laser-plasma conditions (leading 2 to the 
Heavy-Hydrogen fusion) in Heavy-AB targets compared to AB targets. Since the targets and 
irradiation conditions are identical one could use the particle emission from Heavy-AB targets to 
better understand the P-B fusion conditions in AB targets by comparing the respective fusion particle 
fluxes, and fusion crossections, for example. Heavy-AB can be synthesized by using Deuterated [5] 
or Tritiated precursors to AB formation. Using both AB and Heavy AB fusion-fuels would extend 
the range of laser-driven Ion Sources to: Proton (3MeV and higher), Alpha (1-8MeV), 3He (0.8MeV), 
Tritium (1MeV and higher), Deuterium (several MeV), and even Neutron Sources with 2.45MeV or 
14.06MeV neutron energies. This increase in the Source type of particles will also extend their 
applications. For isotope generation we proposed the target-nucleus for isotope production could be 
included in the AB molecule for efficient nuclear interaction [1]: let us call this the “in-molecule 
isotope-target nucleus’ concept. A good example is the isotope production for Positron Emission 
Tomography (PET) using the accelerated Proton or the fusion generated Alpha-particle interacting 
with the Nitrogen nucleus in the AB [1] or Heavy AB fusion fuel: 14N (p, a) 11C (half-life = 20.4min) 
or 14N (a, g) 18F (half-life = 109.8min). We propose to extend this concept to more borohydride 
molecules like, for example Al (BH4)3 laser-target materials to generated 30P (half-life = 2.5min) 
PET from:27Al (a, n) 30P. Add the large variety of metal borohydrides like: Na (BH4) , Ca(BH4)2 
, In(BH4)3 , NaSc(BH4)4 [6], etc., and indeed the class of metal derivatives of BNH materials like 
Na(NH2BH3) or Ca (NH2BH3)2 . Proposed AB [1] and Heavy AB fusion fuel targets for such laser-
driven Ion Sources could be either solid micro- or nano- crystals, single crystals, pressed in pellets or 
coated on tapes as well as high repetition liquid (molten) borane droplet targets. The high repetition 
laser and targets will increase the time-average Flux of the Ion source [1]. Examples of AB micro- or 
nano- crystals fabrication aro also shown in [7] and [8] 
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Abstract 

 
Proton-Boron (pB) fusion is an advanced nuclear fusion reaction offering a cleaner alternative to 
traditional fusion methods. pB fusion has great potential to be used in high-tech application from 
medicine to energy production. Since Boron-11 will be used for pB fusion reaction, Boron based 
substances could be accepted as fuel for pB fusion technique. Recent studies showed that Boron 
nitride (BN) and Ammonium borane (NH3BH3) come to the fore from the other Boron containing 
candidates. In this study, physical, mechanical and chemical properties of BN and NH3BH3 were 
investigated for being usage potential pB fusion applications (1). BN offers several advantages for 
proton-boron fusion reactors, including high thermal stability, chemical inertness, excellent thermal 
conductivity, and effective neutron absorption, making it ideal for plasma-facing components and 
thermal management systems (2). Additionally, BN's properties as an electrical insulator and its 
resistance to radiation and mechanical stress enhance the safety and longevity of fusion reactor 
components (3). Despite its advantages, BN can be expensive to produce and process, which might 
increase the overall cost of fusion reactor construction. In addition, BN's brittleness can be a 
limitation, as it may be prone to cracking under mechanical stress, potentially affecting the durability 
of reactor components (4). Borane compounds were next interesting materials for proton Boron fusion 
applications. The most studied borane compound was NH3BH3 due to its high hydrogen density, 
chemical stability, ease of decomposition at relatively low temperatures, and low toxicity, making it 
an efficient and safer hydrogen source (5). Moreover, its versatility in fuel preparation allows for 
flexible application in various fusion reactor designs. NH3BH3 can be challenging to handle due to 
its sensitivity to moisture and potential for rapid decomposition under certain conditions, posing 
storage and stability issues. Furthermore, its production and processing can be complex and costly, 
potentially increasing the overall expenses for fusion reactor operations. Other borane compounds 
that could be used as laser-target materials for proton-boron fusion include Ammonia-Borane (BNH6 
or H3BNH3) and Lithium-dodeco-closo-dodecaborate (Li2B12H). Hydrogenated boron materials 
increase hydrogen content, enhance stability, and improve neutron absorption, making them useful 
for fusion reactions. However, their complex and expensive synthesis, along with storage and 
handling challenges and the risk of premature hydrogen release, pose significant drawbacks (6). 
Borophene holds significant potential for use in proton-boron fusion reactors due to its high thermal 
conductivity, mechanical strength, flexibility, and unique electronic properties. These attributes could 
improve the efficiency, stability, and durability of fusion reactor components, contributing to the 
advancement and feasibility of proton-boron fusion as a sustainable energy source. However, further 
research and development are necessary to fully understand and optimize Borophene's application in 
this context (7). Current developments are promising, but there is a need to develop high-tech 
materials for the future. 
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Abstract 

 
The search for an optimal pB fuel remains in its infancy and yet it is a key aspect for the ultimate 
success of useful pB fusion.  Hitherto, all tested pB fusion targets comprised compounds of boron 
with heteroelements such as nitrogen, silicon, or carbon-rich polymer films, offering only sparse 
boron content and multi-element contamination that interferes with the pB fusion process by diverting 
energy from the system. It is, therefore, of interest to investigate the potential of a group of 
compounds containing only atoms of hydrogen and boron - the boron hydrides (commonly referred 
to as the boranes) as fuels for the pB fusion process.   The boranes are a broad family of spherically-
aromatic molecules with polyhedral cluster geometries of atoms of boron surrounded by a sheath of 
hydrogen atoms. They do not occur naturally, but are readily synthesized in specialised laboratories 
(like our own) from abundantly available natural materials, where multi-gram and kilogram scale 
production is feasible.  
  
Within this contribution, we present the first demonstration1 of the use of solid boranes as a pB fuel 
(within an “in-target” geometry) and show, for first time, that the solid boron hydride, octadecaborane 
- anti-B18H22, produces a relatively high yield of alpha particles of about 109 per steradian using a 
sub-nanosecond, low-contrast laser pulse (PALS) with a typical intensity of 1016 Wcm−2.1  We also 
provide an overall perspective of boron hydride materials as targets for laser-driven pB fusion. 
 

 
 

Figure 1. pB fusion from B18H22 targets - compressed discs and porous foams.  
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Abstract 
 

The past several years have witnessed significant progress in the science of laboratory fusion. Of 
particular note, is the demonstration of fusion scientific gain, Qsci, the ratio of fusion energy output 
to the incident energy to heat and confine the plasma, greater than one at the National Ignition 
Facility (NIF) with deuterium-tritium (DT) fuel.  This achievement is the first time that Qsci was 
achieved for ANY fusion concept. It is also important to recognize that NIF was designed and built 
with technology available in the 1990’s and with science, rather than energy, as its mission and 
motivation. 
  
The Qsci achieved on NIF, with the most explored and easiest fuel to achieve gain (DT) is far less 
than that required for commercially attractive fusion energy. This presentation will focus on the 
requirements and challenges that must be met for commercially viable  fusion energy, with an 
emphasis on laser driven Inertial Fusion (ICF) including the use of proton -boron fuel.  
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Abstract 

 
Laser technologies have advanced significantly with the understanding of Chirped Pulse 
Amplification (CPA), which allows energetic laser beams to be compressed to tens of femtoseconds 
(fs) pulse durations and focused to a few micrometers (μm). Protons with energies of tens of MeV 
can be accelerated using methods such as Target Normal Sheath Acceleration (TNSA) and focused 
on secondary targets. Under these conditions, nuclear reactions can occur, producing radioisotopes 
relevant for medical purposes. High repetition lasers can produce sufficient isotopes for medical 
applications, making this approach competitive with conventional methods that rely on accelerators. 
The production of the 67Cu, 63Zn, 18F, and 11C were investigated [1] at the 1-petawatt (PW) laser 
facility at Vega III in Salamanca, Spain. These radionuclides are used in positron emission 
tomography (PET) and other applications. The reactions 10B(p,α)7Be and 70Zn(p,4n)67Ga were also 
measured to further constrain proton distributions at different angles. The nuclear reaction products 
were investigated using the pitcher-catcher method, with protons produced by an aluminum target 
and impinging on various targets in both the forward and backward directions relative to the laser. 
Angular distributions of radioisotopes were measured using a High Purity Germanium Detector 
(HPGE). Our results, presented in detail in Rodrigues et al. [1], are reasonably reproduced by 
numerical estimates following the approach of Kimura et al. [2]. Preliminary results from 
radioisotopes production tests performed at ELI Beamlines Facility, Czech Republic, will be also 
presented. Laser technologies are mature enough to compete with accelerators for medical 
radioisotope production. While costs for construction, space, maintenance, etc., may attest to their 
competitiveness, the results suggest that this may be a more advantageous technology. 
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Abstract 
In recent years, there has been a growing interest in laser-driven ion accelerators as a potential 

alternative to conventional accelerators [1]. A particularly promising application is the production of 
radionuclides relevant for medical diagnosis, such as 11C for PET imaging. Typically, the production 
of these nuclides is centralised at cyclotrons, reducing the number of facilities required, but limiting 
the range of usable radionuclides to those with longer lifetimes [2]. In this context, compact laser-
driven accelerators appear as an appealing option for the in-situ generation of short-lived isotopes. 
Albeit the activities required for PET imaging (>MBq) are well above those achievable from a single 
laser irradiation (~kBq), the advent of high-power, high-repetition-rate laser systems opens the path 
to demonstrating relevant activities through the continuous irradiation, provided a suitable target 
system is developed. A target assembly based on a rotating wheel and automatic alignment procedure 
for laser-driven proton acceleration at multi-Hertz rates has been developed and commissioned [3]. 
The assembly, capable of hosting >5000 targets and ensuring continuous replenishment of the target 
with micron-level precision, has been demonstrated to achieve stable and continuous MeV proton 
acceleration at rates of up to 10 Hz using our in-house 45 TW laser system [3]. 

The continuous production of 11C via the proton-boron fusion [11B(p,n)11C] reaction has been 
recently demonstrated from our target assembly using the 1 Hz, 1 PW VEGA-3 system (CLPU, 
Spain) [4]. In an initial campaign, an activity of ~12 kBq/shot was measured, with a peak activity of 
234 kBq achieved through accumulation of 20 consecutive shots [4]. Furthermore, results of a more 
recent campaign will be presented, where activation levels in excess of 4 MBq where achieved, as 
measured through using coincidence detectors, and supported by online measurements of high-flux 
neutron generation. We demonstrate that the degradation of the laser-driven ion beam due to heating 
of optics is currently the only bottleneck preventing the production of pre-clinical (~10MBq) PET 
activities with current laser systems. The scalability to next-generation laser systems will be explored 
to study the potential for production of clinical (~200MBq) activities. 
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Abstract 

 
Radionuclides are used worldwide for medicine for example in diagnostics and therapeutic 
procedures such as positron emission tomography (PET) imaging and targeted radionuclide therapy 
once incorporated into a radiopharmaceutical. 
 
Most of the radionuclides require a cyclotron or a nuclear reactor to be produced. We aim to produce 
them using lasers, for they are more compact and cheaper to both run and maintain, thus bringing 
radionuclides use into more hospitals. 
 
We performed an experiment using the high-repetition rate petawatt laser VEGA III at the CLPU 
facility (Salamanca, Spain). This pitcher-catcher type experiment involved several types of catcher 
target materials, all interacting with the laser-driven TNSA proton beam: calcium-based targets to 
produce 44Sc �ȕ+ emitter) and 47Sc �ȕ- emitter), boron-EDVHG�WDUJHWV�WR�SURGXFH�Į�SDUWLFOHV�DQG�11C and 
lithium-based targets to produce neutrons. 
 
Results from high purity germanium detector gamma spectrometer show the effective production of 
scandium radioisotopes from calcium silicate targets (1x105 nuclei/shot for 44Sc and 2.5x103 
nuclei/shot for 47Sc), which yields to several patient doses if a high-repetition-rate installation is used 
and proportionality assumed. We also measure 1.7x107 neutrons/shot production with LiF targets and 
thick BN targets allow us to measure 5x106 Į�VKRW�(from the interaction of protons with 10B alone) 
and 1.6x107 11C/shot. 
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Abstract 
Proton-Boron (pB) fusion is currently being explored as a promising alternative for neutron-less, 
laser-ignited fusion [1]. Two primary experimental approaches under consideration are in-target 
irradiation and the pitcher-catcher schemes. In this work, we propose investigating a novel pitcher 
for the pitcher-catcher fusion scheme [2-4]. Specifically, the Boron target (catcher) will be irradiated 
using proton beams that are accelerated by optically shaped gaseous target profiles (pitcher) in the 
near-critical density (NCR) plasma regime.   
High pressure NCR gaseous targets are considered a promising alternative to solid targets, that can 
support High Repetition Rate (HRR) debris-free proton sources. Here we present a novel, gaseous 
profile optical shaping method, capable of generating NCR profiles via multiple laser induced, 
blastwaves (BWs) [5]. The counterpropagating BWs compress the target upon their shock front 
collision, achieving steep density gradient plasma slabs of a few microns width. The optical shaping 
is studied using 3D MagnetoHydroDynamic (MHD) simulations while 3D Particle-In-Cell (PIC) 
models, are used to simulate the 45 TW fs Zeus laser plasma interaction to demonstrate the efficiency 
of proton acceleration. Notably, the Magnetic Vortex Acceleration (MVA) mechanism [5] shows 
high efficiency in coupling laser energy into the target, producing a proton beam energy spectrum 
well-suited for the realization of the proposed scheme, as confirmed by PIC simulations.  
Finally, we present preliminary experimental findings of the shaping of the gas-jet targets, 
implemented at the experimental chamber of the 45 TW, Ti:sapphire, Zeus laser system, hosted at 
the Institute of Plasma Physics & Lasers (IPPL) of the Hellenic Mediterranean University [6]. 
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Abstract 

 
Driving the nuclear fusion reaction p+11B→ 3α + 8.7 MeV in laboratory conditions, by interaction 
between high-power laser pulses and matter, has become a popular field of research, due to numerous 
applications that it can potentially allow: a potential alternative to deuterium-tritium (DT) for fusion 
energy production [1,2], astrophysics [3] and alpha-particle generation for medical treatments [4]. 
Possible schemes for laser-driven p+11B reactions are to directly irradiate a borated target with 
energetic laser pulses at high intensity or, alternatively, direct a beam of laser-accelerated protons 
onto a boron sample (the so-called “pitcher-catcher” scheme). These techniques were successfully 
implemented, so far, with energetic lasers yielding hundreds to thousands of joules per shot [5-7]. 
This is possible on a few large installations and for a limited number of shots. Instead, we present 
here a complementary approach, exploiting the high-repetition rate of the VEGA III petawatt laser at 
CLPU (Spain), aiming at accumulating results from many interactions at lower energy (20 J in about 
50 fs at maximum compression, leading to about 7 J conveyed on target), and at moderate intensity 
(about 1019 W/cm2), for a better control of the parameters and statistics of the measurements. 
In this work, we aim at providing a detailed insight of the effectiveness of the laser-driven p+11B 
fusion in the pitcher-catcher scheme, at high-repetition rate. Despite a moderate energy per pulse, our 
experiment allowed exploring the laser-driven fusion process with tens (up to hundreds) of laser 
shots, leading to an improved optimization of the diagnostic techniques and an enhanced statistics of 
the obtained results. We will discuss the challenges of implementing this experimental scheme and 



 
highlight its critical aspects, in terms of detection of fusion products and assessment of its 
performance. 
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Abstract 
 

The majority of studies on laser-driven proton-boron nuclear reaction is based on the 
measurement of α-particles with Solid-state nuclear tracks detector (Cr39). However, Cr39’s 
interpretation is difficult due to the presence of several other accelerated particles which can 
biase the analysis. Furthermore, in some laser irradiation geometries, cross-checking 
measurements are almost impossible. In this case, numerical simulations can play a very 
important role in supporting the experimental analysis. In our work, we exploited different 
laser irradiation schemes (pitcher-catcher and direct irradiation) during a same experimental 
campaign, and we performed numerical analysis, allowing to obtain conclusive results on 
laser-driven proton-boron reactions. A direct comparison of the two laser irradiation schemes, 
using the same laser parameters is presented. 
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Abstract 

Deuterium-tritium (DT) is the well-known best candidate fuel for future nuclear fusion reactors, 
because it provides larger fusion cross section at lower energies, with respect to other proposed fuels. 
But supply and management of radioactive tritium give several serious problems for a future reactor. 
For these reasons, advanced schemes employing other fuels are now under study. The most promising 
is p+11B→ 3α + 8.7 MeV, where reactants are not radioactive and abundant in nature, but which 
requires much higher energies than DT for showing cross-sections somehow comparable. Thus, there 
are today several studies performed on this reaction for future energy purposes (both for magnetic 
confinement fusion and inertial confinement fusion approaches [1,2]) but also for other reasons: 
astrophysics [3], alpha-particle generation for medical treatments [4], ... These experimental studies 
were successfully implemented, so far, with energetic lasers yielding hundreds to thousands of joules 
per shot [5-8]. This is possible on a few large installations and for a limited number of shots. 
Instead, we proposed a complementary approach, with much lower pulse energy but exploiting high-
repetition rate laser-systems at PW-power scale [9,10], implementing the ‘pitcher-catcher’ scheme 
for p+11B reaction with laser intensities about 1019 W/cm2 in VEGA III PW laser.  
In this work we describe the experiment recently performed with the same scheme using the L3-
HAPLS laser in the ELIMAIA beamline at ELI Beamlines facility with much higher intensity: above 
1021 W/cm2. Moreover, we exploited the potential of the in-target scheme for the same laser but this 
time with deuterated targets to trigger DD nuclear reactions. Both the two schemes were successfully 



 
implemented and triggered the related reactions and, in this presentation, we are going to give details 
of them and of the preliminary results achieved. 
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Abstract 
 
In laser-plasma interaction, for experiments aiming at optimizing  proton-Boron reaction, it is crucial 
to identify possible sources of instabilities that can affect the reproducibility of sequential shots and 
so alpha particle emission. Due to the necessity of attaining a good statistics, employment of high 
repetition rate lasers is gaining more and more interest, also linked to the significative ongoing 
improvements of the laser technology. These kind of lasers are specially suited for testing laser-driven 
beam acceleration schemes, as for example in Extreme Light Infrastructure facilities. Despite the fact 
that these infrastructures are now widespread and widely used, a critical point to address is the level 
of reproducibility that can be obtained in nominally identical shots and, how the stochastic variations 
of the interaction can affect the spectra of the accelerated ions at different angles. We present 
experimental results of proton spectra achieved with both TOF diamond detectors and Thomson 
spectrometry arranged at different angles with respect to the target normal in the framework of an 
experimental campaign, at the VEGA III laser at CLPU (Salamanca). The interaction regime is based 
on pulses having duration in the order of 220fs, laser intensities up to 1020W cm-2 and about 25J 



 
energy on solid targets. We show results obtained considering a statistical analysis of a significant 
number of similar shots. 
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The 11B (p,α)2α reaction, involving the fusion of low-energy protons (p) with a 11B nucleus to produce 
three alpha particles (α), has emerged as a promising alternative or complementary approach for clean 
and efficient energy generation. In this study, the nuclear fusion channel of the p-11B reaction was 
initiated by a sub-nanosecond laser pulse focused onto 10 µm thick boron-doped thin targets, with 
intensities around 1016 W/cm². The experiment was conducted at the Prague Asterix Laser System 
(PALS) facility using the Asterix laser, which operates at a fundamental wavelength of 1315.2 nm 
and delivers an average energy of 600 J within a 300 ps (FWHM) pulse duration on target. Two 
acceleration schemes were examined: the in-target and the pitcher-catcher configurations. 

In the in-target scheme, the longitudinal ponderomotive force generated by the intense laser pulse 
creates an electrostatic field that accelerates protons from the front surface of the target, prompting 
direct interactions with boron ions within the same target. Conversely, in the pitcher-catcher scheme, 
the first target is employed to produce energetic protons, which subsequently collide with a second 
target composed of 11B. 

A thorough characterization of the alpha particle flux and angular distribution was achieved using 
multiple diagnostic tools, including Silicon Carbide and Diamond detectors in a Time of Flight (TOF) 
configuration, CR39 track detectors, and Thomson Parabola Spectrometers (TPS). These diagnostics 
facilitated the measurement of key characteristics of particles generated in both the backward (target 



 
front side) and forward (target rear side) directions, as well as from the secondary target. The 
concurrent analysis of the two acceleration schemes yielded significant insights into the p-11B 
reaction. Alpha particles with energies up to 8 MeV were observed in the in-target configuration, 
surpassing those in the pitcher-catcher setup. Furthermore, the deployment of various diagnostics led 
to the development and validation of a precise method to distinguish alpha particles from the proton 
background. The use of multiple complementary diagnostics was crucial in determining the proton 
energy cut-off, as well as the angular and energy distribution of the emitted particles. A total of 1012 
alpha particles per solid angle were detected, with a clear dependence on the angle of emission. On 
the other hand, the pitcher-catcher scheme demonstrated an alpha particle distribution that perfectly 
aligns with the classical cross-section emission, as expected. Owing to the encouraging and 
remarkable results achieved during the aforementioned experimental campaign, a project has recently 
been funded by the INFN (Istituto Nazionale di Fisica Nucleare) on this topic. The international 
initiative, entitled FUSION (FUsion StudIes of prOton boron Neutronless reaction  
in laser-generated plasma), aims to enhance the fusion reactions and investigate the mechanisms of 
interaction to optimize the production of alpha particles in the p-11B field. 
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Abstract

The objectives of this research are to present preliminary results on dependency of alpha particle
generation efficiency on different compositions of primary targets comparing both the
"pitcher-catcher" and “in plasma” schemes. This will allow a comparison to be made between the
quantity and characteristics of generated alpha particles in proton-boron fusion. In this study
specific targets and irradiation schemes designed to optimise alpha yield and fusion rates.
Furthermore, sophisticated diagnostic systems are employed to reconstruct the alpha angular
distribution and discriminate between emitted charged particles. This Experiment is performed at
the Prague Asterix Laser System (PALS) facility in Prague. Concurrent measurements are taken
for "in plasma" and "pitcher-catcher" combinations. The fusion reactions are initiated in a plasma
generated by long-pulse laser (600 ps) that interact with primary target which consists of various
types of boron-based materials (polymer-boron and polymer-boric acid mixtures prepared with
different compositions by varying the weight ratio between polymer and boron or boric acid) with
a thickness of about 3 mm and a boron/polymer ratio of 10-20-50% and reference (acrylic resin
alone) not containing any boron content. The protons in the generated plasma accelerated from
the primary target surface to a maximum energy of around 1.5 MeV, they were directed onto a
secondary target composed of 200 micron-thick neutral boron that was positioned perpendicular to
the primary targets normal. The detecting system has a variety of diagnostic instruments to
measure the charged particles that are produced by both primary and secondary targets. The CR39
detectors have been widely used and equipped with aluminium filters of varying thicknesses to
block heavier ions and differentiate particles based on their Linear Energy Transfer (LET). This
procedure facilitates the estimation of different energy contributions and reconstruction of the
alpha-particle spectrum. CR39 detectors are precisely positioned forward and backward relative to
the laser propagation axis. Time of Flight (ToF) silicon carbide (SiC) and diamond detectors have
been placed next to the CR39 detectors at similar detection angles to the primary and secondary
targets for energy distribution measurements and identification of plasma ions and alpha particles.
To undertake an accurate analysis, two Thomson Parabola (TP) spectrometers are employed. The
location of one TP spectrometer is positioned approximately 0° with respect to the primary target's
normal, which is anticipated to have the maximum number of protons. The second TP
spectrometer is in the backward direction.

Our results show that increasing the alpha particle rate can be accomplished with an optimised
target containing a high concentration of 11B. This can lead to improvements in fusion efficiency
as well as insightful understanding of the processes underlying alpha particle generation.
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Abstract 
 
In order to improve, investigate and explain the p11B fusion reaction in plasmas, the FUSION 
project aims to bring novelty in several aspects thanks to a synergy of different branches. Besides 
optimizing the reaction scheme using various laser systems, new targets, and the most advanced 
simulation tools, optimizing and enhancing diagnostic techniques for plasma and the resulting 
reaction products is crucial. Diagnostics such as Time-of-Flight (ToF) detectors results of 
paramount importance to obtain useful information about the experiment.  
 
Thanks to the excellent physical properties of diamond, such as its wide band-gap, fast response 
time, and radiation hardness, diamond detectors are among the alternative diagnostic tools for next-
generation fusion machines. In view of this, a prototype diamonds array device was built at 
University of Rome ‘Tor Vergata’ and tested at the PALS laser facility (Prague) for the FUSION 
experiment. 



 
 
Six diamond radiation detectors with a sandwich structure, incorporating metal, intrinsic diamond 
and metal again were realized and calibrated. The fabrication includes a high-purity intrinsic 
diamond layer deposited through Microwave Plasma Enhanced Chemical Vapor Deposition (MP-
CVD) into a low-cost substrate of High-Pressure-High-Temperature (HPHT) diamond. Each 
diamond was microwire bonded in a PCB and an appropriate aluminum housing was constructed 
for shielding the EMP noise and for allocating two passive CR39 detectors. On the same side, six 
circular pinholes were created above the corresponding six diamond unit, to which aluminum filters 
of different thicknesses are applied to allow efficient discrimination of the particles impinging 
through their stopping power. 
 
A code written in Python, integrated with the SRIM/TRIM simulation code, was developed. The 
aim of the code is to process particle distribution (dN/dE) given as input to retrieve the ToF signal 
that this distribution generates on the diamond array (or in a ToF detector, in general). This can lead 
to have an hybrid predictive scenario where simulation results are merged with real data in order 
not only to obtain speculative outcomes on the origin of the signal, but also a robust method of 
comparison and compatibility of results with other diagnostics, such as the CR39, included in the 
device, or Thomson Parabola. This code aims at developing a signal prediction tool based on 
experimental conditions, to provide precise design and optimization guidelines for the diamond 
detector unit and its electronics. 
 
This work has been carried out within the framework of the COST Action CA21128-PROBONO 
“PROton BOron Nuclear fusion: from energy production to medical applications”, supported by 
COST (European Cooperation in Science and Technology -www.cost.eu). 
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Abstract 

 
The FUSION project (FUsion Studies of prOton boron Neutronless reaction in laser-generated 
plasma) aims at enhancing the efficiency of p-11B fusion reaction in plasma; the applications of this 
process are very interesting, from massive energy production to laser-driven ion acceleration. One of 
the fundamental aspects for the development of this technology is the energy loss of involved ions in 
plasmas. While ion stopping power in cold matter is now relatively well known and has been 
characterized with the help of a large set of experimental data and renowned studies (starting from 
the work conducted by Bethe almost a century ago [1, 2]), a lot of open questions remain when it 
comes to ions stopping in ionized matter, i.e. in a plasma, especially in the energy range where 
projectile ion velocity approaches the one of free plasma electrons. Theoretical and semiempirical 
simulations are thus essential to ensure appropriate experimental designs and interpretation of results. 
However, in the aforementioned energy domain there is a lack of experimental constraints, needed to 
tune-up the simulations; in particular, data reported in literature are few and in poor agreement with 
prediction of existing models. The main aim of this work is a systematic and careful measurement of 
stopping power for several ions versus plasma parameters, especially in the region of thermal 
velocities, where the energy deposition should depend strongly on plasma temperature, density and 
ionization fraction. This contribution will provide an overview of the proposed techniques, and the 
results obtained during first tests for the characterization of experimental apparatus.  
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Abstract 
 
 

 
We demonstrate a compact ion beam device capable of accelerating !+ and "+ ions up to 75 keV 
energy, on to a solid target, with sufficient beam current to study fusion reactions. The ion beam 
system uses a microwave driven plasma source to generate ions that are accelerated to high energy 
with a DC acceleration structure. The plasma source is driven by pulsed microwaves from a solid-
state RF amplifier, which is impedance matched to the plasma source chamber at the ISM band 
frequency (2.4 - 2.5 GHz). The plasma chamber is held at high positive DC potential and is isolated 
from the impedance matching structure (at ground potential) by a dielectric-filled gap. To facilitate 
the use of high-energy-particle detectors near the target, the plasma chamber is biased to a high 
positive voltage, while the target remains grounded. A target loaded with deuterium is used to 
study "−" fusion and a #4$ or %&#6 target is used to study '−11# fusion. Detectors include solid-
state charged particle detector and a scintillation fast neutron detector. The complete ion beam system 
can fit on a laboratory table and is a useful tool for teaching undergraduate and graduate students 
about the physics of fusion. 
 
 
 
 



 
 

Laser-driven generation of high-flux and energetic 
alpha particles through novel target schemes 

 
Daniel P. Molloy,1, 2 Davide Orecchia,3 Marco Tosca,4, 5 Alessandro Milani,3 Aaron 

McNamee,1 Matteo Valt,6 Kateryna Biliak,5 Colm R. J. Fitzpatrick,1 Lorenzo 
Giuffrida,4 Vasiliki Kantarelou,4 Jonathan P. Kennedy,1 Alessandro Maffini,3 Philip 
Martin,1 Gagik Nersisyan,1 Daniil Nikitin,5 Mariia Protsak,5 Matteo Passoni,3 Andrei 
Choukourov,5 Antonino Picciotto,6 Satyabrata Kar,1 Marco Borghesi,1 and Daniele 

Margarone1, 4 

 
1Centre for Light-Matter Interactions, School of Maths and Physics, Queen’s University Belfast, UK 

2HB11 Energy Holdings Pty, Freshwater, Australia 
3Department of Energy, Politecnico di Milano, Italy 

4ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Czech Republic 
5Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, Czech Republic 

6Sensors and Devices Centre, Bruno Kessler Foundation, Italy 
 

Abstract 
High-intensity lasers can accelerate ions to MeV energies capable of driving proton-boron (pb) 
fusion reactions and generating multi-MeV alpha particles [1]. For applications (e.g., radioisotope 
production), improving laser-to-alpha conversion efficiency, energy spectrum, and angular 
distribution of the alpha particle beam is beneficial. We present experimental and numerical 
investigations demonstrating the generation of up to 5x107 alphas/sr/J (see Figure 1) from novel 
target geometries with moderate laser parameters 
(~10J, 800 fs, 1019 W/cm2) through the 
implementation of several low-density depositions 
which improve laser-energy absorption into 
protons [2], thus enhancing the pb fusion reaction 
yield. This is comparable to the highest reported 
yields achieved with kJ-class[3] and ultra-high-
intensity laser systems[4]. In addition, we show 
the results of a numerical study based on a novel 
laser-target interaction scheme capable of 
generating highly energetic (>20 MeV) beamed 
alpha particle streams desirable for medical 
radioisotope [5] production. 
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Figure 1. Summary of alpha-particle yield, 
normalized by laser energy from recent laser-driven 
pb fusion experiments. 
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Abstract 

 
The proton-boron fusion (11B + p → 3α + 8.7 MeV) has a lower cross-section compared to the 

deuterium-tritium reaction, but it has the advantages of abundant fuel and a reaction process that does 
not directly produce high-energy neutrons. We utilized the accelerator in the Institute of Modern 
Physics to carry out experimental research on the proton-boron fusion for the range 50 to 
240keV.Through experiments of the proton beam interacting with solid boron targets/hydrogen-
boron targets/carbon-hydrogen-boron targets, we measured the alpha particles and characteristic 
gamma spectral lines. We found that the yield of alpha particles for the hydrogen-boron target is 
higher than the boron target at the same proton energy; the ratio of α0 to α1 reaction channel increases 
rapidly around 170keV; if a high-intensity beam is used on the carbon-hydrogen-boron target, an 
increase in the yield ratio is observed. The characteristic spectral lines of 4.4MeV and 11.7MeV 
generated by the gamma channel (11B + p → 12C + 16.1 MeV) were measured and the ratio of 
gamma to alpha was obtained. 
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Abstract 

The rapid growth of interest in laser induced proton-boron reaction resulted in numerous experiments, 
majority of which utilized short-pulse, high-intensity laser systems. However, no reports of 
employing laser pulses exceeding sub-nanosecond range are found in literature. The results of 
numerical simulations presented in this work prove that it is possible to obtain thermodynamical 
parameters of the plasma which are sufficient to drive deuterium-deuterium fusion reactions by 
employing the cavity-type geometry (Cavity Pressure Acceleration mechanism1) with high-power, 
nanosecond-long laser pulses. Radiation-hydrodynamics simulations performed using the FLASH 
code2 show that up to fourfold increase in electron temperature, while maintaining higher density and 
pressure of the plasma, can be obtained in this scenario compared to irradiating a flat target of the 
same material. This approach, previously tested using ps-class laser system3,4, in principle allows to 
generate multi-MeV proton beams via one of the thermonuclear D-D reaction channel rather than 
Target Normal Sheath Acceleration mechanism, which is a widely used technique for ion acceleration 
with short pulse laser system. Such target geometry, tailored specifically for L4n beamline at ELI-
Beamlines (Czech Republic), for the first time will be applied in pitcher-catcher configuration of 
proton-boron fusion related experiment in the near future.  
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Abstract 

 
 The interest in the behavior of boron nitride (BN) in extreme conditions is largely justified 
by recent renaissance in hydrogen boron fusion studies and by the perspective of application of this 
material as ablator in ICF in alternative to diamond (high density carbon, HDC). In particular, hydro 
simulations related to hydrogen boron fusion will need information on the Equation of State of boron 
and boron compounds. 
 The database of experimental Equation of State (EoS) points for BN is very limited. Only a 
few points are available on boron nitride in extreme conditions between 12 and 27 Mbars [1] while 
for pure boron there is one point at 56 Mbars [2].  
 Therefore, we have conducted studies of the BN EoS at the PALS installation in Prague, 
Czech Republic. High compression of BN (up to 15 Mbar) was achieved with the PALS laser 
operating at 3w (438 nm) with pulse length of τL ∼ 350 ps delivering energy up to 200 J. A flat-top 
intensity profile within the focal spot of ~400 μm diameter was assured by using a phase plate.  
 The experimental points were obtained using Streaked Optical Pyrometry (SOP), Velocity 
Interferometer System for Any Reflector (VISAR) and Photonic Doppler Velocimeter (PDV) 
diagnostics. The VISAR system was constructed during experimental campaigns although, for the 
moment, only worked as a reflectivity diagnostic. PDV was used for timing measurements. 
 In the experiment, we used multilayer stepped targets produced at Scitech Precision, UK, 
with either aluminum or quartz as reference material. We then simultaneously measured the shock 
velocities in the reference material and in BN, and we used the impedance mismatch technique to 
obtain the experimental points on the equation of state (EoS) of BN, which were in fair agreement 
with the available theoretical models. 
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Abstract 
 
High-intensity laser pulses interacting with materials rich in hydrogen and boron, when properly 
configured, can initiate the proton-boron (pB) fusion reaction, resulting in the generation of three 
energetic alpha particles (p+11B → 3He + 8.7 MeV). These alpha particles are of considerable 
interest in emerging applications such as green energy production and non-invasive cancer 
treatments.  
One potential approach to increasing alpha particle yield is to explore various target configurations, 
modifying the concentrations of the elements involved in the reaction or enhancing laser absorption 
by the target.  
In our study, we first conducted an experiment aimed at boosting the volumetric laser absorption 
within the target by using boron nitride nanotube (BNNT) targets, which possess an average density 
of 1/5th that of solid density and compared the results with a standard flat Polyester (PS) target [1]. 
The comparison showed a 1.5-fold increase in proton cutoff energy and a 2.5-fold increase in the N4+ 
/ C4+ ion cutoff energy. 
Additionally, we employed thin films of plasma polymers ppC:H evaporated on BN substrates with 
varying densities. These ppC:H films were used as hydrogen sources when their properties were 
optimally matched with the laser parameters [2-3]. Currently, to combine the benefits of target 
morphology and low density with the hydrogen content of the target, we have prepared plasma 
polymerized hexane nanoparticles (ppC:H NPs) within a gas aggregation cluster source (GAS) as 
advanced targets for laser-driven pB fusion. The mean size of NPs can be tuned between 600 nm and 
120 nm, depending on the discharge power. We examined the porosity of the NP deposits by 
measuring BET isotherms, while RBS/ERDA measurements were used to assess the elemental 
content, including the hydrogen concentration. Furthermore, we prepared hybrid nanostructures by 
r.f. magnetron sputtering of 100-nm boron thin films over the multilayers of 120 and 600-nm ppC:H 
NPs. The penetration of boron into the voids between the NPs was characterized by Nuclear Depth 
Profiling. These targets have successfully triggered the pB fusion reaction using a short pulse high 
energy laser TARANIS (8J in 900fs) and the results showed that ppC:H NPs combined with B-rich 
materials enhance the laser-driven pB fusion. 
 

 
References 
1. M. Tosca, A. Morace et al., Physical Review Research (2024) DOI 10.1103/PhysRevResearch.6.023326 
2. V. Istokskaia, M. Tosca et al., Communications Physics 6 (2023), 10.1038/s42005-023-01135-x. 
3. M. Tosca, D. P. Molloy et al., Frontiers of physics (2023) DOI 10.3389/fphy.2023.1227140. 
 
Acknowledgements 
The authors thank the support of the Czech Science Foundation through Grant No. GACR24-11398S and MT the student 
GAUK 208123.  
 

https://doi.org/10.3389/fphy.2023.1227140


Synthesis, characterization and testing of hydrogenated
boron nanofoams for laser-driven proton-boron fusion

A. Maffini1, D. Orecchia1, A. Milani1, M. Passoni1, D. P. Molloy 2,3, 

G. Nersisyan2,V Kantarelou4, L. Giuffrida4, D. Margarone 2,4 

1 Department of Energy, Politecnico di Milano, Italy
2 School of Mathematics and Physics, Queen’s University Belfast,  UK

3 HB11 Energy Holdings Pty, Freshwater, Australia
4 ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Dolni Brezany, Czech Republic

Abstract

The investigation of laser-driven 11B(p,α)2α fusion reaction has attracted growing research interest

in the recent years thanks to the latest advancements in high-power laser technology [1]. Several
applications have been considered, ranging from fusion energy production to bright alpha particle
sources [2] and medical applications [3]. In this context, the design and fabrication of optimized
targets crucial to  improve the fusion yield and meet the application requirements. 

In this  contribution  we report on the synthesis,  characterization  and testing of a novel  class of
targets for laser-driven proton-boron fusion experiments, namely boron-based nanofoams produced

by  means  of  the  femtosecond  Pulsed  Laser  Deposition  (fs-PLD)  technique.  By  exploiting  the
versatility of the fs-PLD [4], nanostructured boron foams with controlled density (20-100 mg/cm3 ),
thickness (up to 100 µm) and  hydrogen content (from no hydrogen up to 1:1 boron/ atomic ratio by

co-deposition of boron and high density polyethylene) are produced.
Experimental tests performed with the Taranis laser system at Queen’s University Belfast (8 J, 800

fs, 1019 W/cm2) have shown a significant alpha yield (above 5×108 sr-1) using hydrogenated boron
nanofoam  targets,  marking  a  ~50-fold  increase  with  respect  to  the  pure  boron  foam  on  a
polypropylene  substrate.  The  ongoing  analysis  of  the  experimental  data  indicates  a  strong

contribution  of  in-target  fusion  reactions  occurring  within  the  nanofoam  layer.
These  results  underscore  the  potential  of  nano-engineered  targets  in  laser-driven  proton-boron

fusion  experiments.  Future  work  will  focus  on  further  refining  target  properties  and  exploring
different  laser  parameters  to  maximize  fusion  efficiency  and  better  understand  the  underlying
mechanisms driving in-target fusion reactions in nanostructured materials.
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Abstract 

 
Porous materials, or foams, of light elements have numerous applications in laser-matter interaction, 
being able to increase the coupling of the laser with the target, thus maximizing the energy stored in 
the plasma. Plastic foams have been employed for decades in this sense, but it is important to 
investigate alternative chemical compositions and morphologies for new regimes of interaction. 
In this work we report about the experimental study of nano-structured foams made of pure Carbon 
under high-power laser irradiation. The foams were produced by the Pulsed Laser Deposition (PLD) 
technique at the Micro- and Nano-structured Materials Laboratory (NanoLab) of the Politecnico di 
Milano and they have been irradiated at the ABC laser facility at ENEA Centro Ricerche Frascati, 
with an intensity on target of more than 1014 W/cm2. A thorough characterization of the plasma 
produced during the interaction has been achieved by the large number of diverse diagnostics fielded 
in the experiment. An increased ablation loading has been found for a specific set of foam parameters, 
which can be useful for proton-Boron fusion in the in-target scheme. Doping these foams with 
hydrogen and Boron may lead to an increased yield in fusion products compared to solid 
homogeneous materials. Further theoretical and experimental developments of this work will be 
discussed. 
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Abstract 

 
Compared with DT thermal nuclear fusion scheme, proton-boron fusion attract less attention 

because  it requires higher temperature for the maximum cross section and it is difficult to realize the 
energy gain over the bremsstrahlung loss. However, high power lasers open the path to fusion under 
non-equilibrium condition like fast ignition scenario but the fuel is boron. In this way, the protons 
will not only serve as the heating source but directly induce nuclear reaction. In this talk, we will 
introduce our recent results concerning the intense particle beam generation as well as beam-target 
nuclear reaction study based on high power lasers as follows. 

1) We experimentally generated brilliant electron beams and gamma rays through picosecond-
laser-NCD (near critical density) plasma interactions. With the same laser, the electron beam energy 
and temperature are enhanced by one order compared with foil case. The gamma rays are enhanced 
by two orders if a high-Z converter are used.  

2) We experimentally studied the p11B nuclear reactions in CHOB plasma circumstance initiated 
by laser-accelerated intense proton beams. The time of flight (TOF) technique based on plastic 
scintillator are developed for the alpha particle detection. Compared with CHO case, once the target 
is boron doped, the TOF signal is greatly enhanced due to the fact that proton boron reaction happens. 
The reaction product yield are enhanced in plasmas compared with cold matter. The yield increases 
with beam intensity non-linearly and exceeds the beam-target interaction predictions 

3) We conducted 12C(e/!, p)11B reaction measurement to discriminate the mechanism for the 
p11B nuclear reaction enhancement. The electrons and gamma rays, that are usually generated 
simultaneously with protons, induced very little proton and boron element in the target, and had 
negligible influence on the proton boron nuclear reaction enhancement. 
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Abstract 
    To overcome the database gap and reach the goal of p-
11B plasma burn in the EHL-3A device [1], major areas 
of R&D can be delineated as follows: (see, Figure) 
1) Measure and model accurately the double 

differential p-11B fusion cross-sections and utilize 
the non-thermal enhancement of the observed fusion 
reaction rates [2]; 

2) Reduce and contain electron Bremsstrahlung and 
synchrotron radiation losses, and metal impurities 
via a super-X divertor configuration allowed by 
demountable toroidal field magnets; 

3) Raise the efficiency of ion heating including the 
superthermal components, via nonlinear or 
stochastic mechanisms; and  

4) Study the unique advantages of ST p-B plasmas, 
such as high beta, improved energy confinement via 
boronized CFC wall tiles, high current drive efficiency by electromagnetic waves at multiple 
harmonics [3], suppressed ion turbulence transport via strong plasma flow shear and substantial 
boron “impurity”, tearing mode stability via positive gradients of parallel current densities, and 
enhanced containment of superthermal electrons and ions by increasing the space between the 
LCFS and the outboard plasma facing components. 

 Data from EXL-50 [3] and EXL-50U have revealed plasma confinement transitions from turbulent 
to quiescent states under strong boron fueling and moderate ECRH power. Recent collisionless 
plasma data from MAST, NSTX, Globus-M2, and ST40 suggested a stronger leverage of BT and R 
and a weaker leverage on Ip in E scaling. As a result, designs of compact next-step ST experiments 
have been suggested [1] (see, Table). The benefits of substantial boron fueling in D or D-T plasmas 
can help bridge the database gap of p-11B plasmas. In view of the possibility of testing fusion  
physics without significant neutrons and the progression of MAST-U and EHL-2, EHL-3A and STEP 
goals, extensive tests of p-B plasma properties in wide parameter ranges are therefore encouraged. 
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Figure. Database gap in self-sustained p-11B 

burn and directions of R&D. 

Table. Parameter goals for present and future ST DT or p-11B fusion devices 
 EXL-50U MAST-U EHL-2 EHL-3A STEP 
Ti0ni0E (1020keVm3s) 0.05 0.5 15 400 40 
Major radius R (m) 0.6-0.8 0.7 1.05 2 3.6 
Minor radius a (m) 0.4-0.5 0.41 0.57 1.1 2 
Toroidal field BT (T) 1.2-0.9 0.9 3 4 3.2 
Plasma current Ip (MA) 0.5-0.7 2 3 10 23 
Flat-top time @ BTMAX (s)   3   
Fusion power PDT/PpB (MW)   ~0.002 ~0.28 ~1500 

https://doi.org/10.1063/5.0199112
https://doi.org/10.1155/2022/9868807
https://doi.org/10.1088/1741-4326/ac71b6
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Abstract 
Aneutronic fusion using commonly available fuels such as proton (p) and boron 11 (11B) is one of the 
most attractive potential energy sources. The development of techniques to realize its potential is 
desirable for the experimental capability to produce p-11B fusion in the magnetically confined fusion 
device using hydrogen beam injections. We performed experiments of p-11B fusion in the magnetic 
confinement fusion device Large Helical Device under the collaboration between the National 
Institute for Fusion Science (NIFS) in Japan, and TAE Technologies in the USA [1, 2]. The 
experiments were conducted with the support of intense negative-ion-source-based hydrogen beams 
(N-NBs) [3], and an impurity powder dropper (IPD) [4] co-developed under the collaboration 
between NIFS and Princeton Plasma Physics Laboratory, USA. In p-11B experiments, intense N-NBs 
whose acceleration energy were of up to 163 keV were injected into a plasma with natural boron 
grain injection by the IPD. Significant quantities of signal pulses resulting from p-11B fusion-born 
alpha particles were measured using a custom-designed alpha particle detector based on a passivated 
implanted planar silicon detector. The time trend of the alpha particle counting rate obtained with the 
alpha particle detector was in good agreement with the global p-11B alpha emission rate calculated 
based on classical confinement of the energetic proton using experimentally obtained plasma 
parameters. We will present the detail of experimental 
results and comparison with the numerical calculation. 
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Figure 1. Experiment for p-11B demonstration 

performed in Large Helical Device. 
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Abstract 

 
We plan to carry out p-11B plasma experiments in an upcoming spherical torus (ST) EHL-2 [1] to 
measure the reaction rates covering the resonances at the 675keV and the 162keV [2]. Neutral beam 
injection (NBI) and ion cyclotron resonance heating (ICRH) will be used to heat the plasma and 
generate superthermal ion components and increase the reaction rate. Both thermonuclear and 
superthermal reactions will be measured and analyzed. 
We calculated the anticipated alpha and gamma emissions in thermal-thermal, beam-thermal 
(target) [3], and superthermal-thermal [4] p-11B reactions in EHL-2 and EXL-50U [1]. EHL-2’s 
parameter goals include n_e0=1.3×〖10〗^20 m^(-3), T_i0=30keV, I_p=3MA and B_T=3T at 
R=1.05m. Assuming n_B=0.07n_i, 〖1.5×10〗^15 and 〖5×10〗^14 alpha particles per second 
can be produced by p-11B thermal-thermal reactions and beam-thermal fusion (200keV, 1MW 
NBI), respectively (Figure 1). Gamma emissions are also estimated and considered as an auxiliary 
detection approach. In the case of EXL-50U, the ICRH-NBI synergy may drive superthermal-
thermal p-11B reactions and produces approximately 〖5×10〗^6 alpha particle particles per 
second (20keV, 3MW NBI + 1.5 MW ICRH). 
These results are found to be sensitive to the details of p-11B reaction model, which at present is 
unreliable [5,6]. New measurements to its double differential cross section are therefore planned to 
improve the understanding of reaction mechanism. The status of this R&D will be reported at the 
workshop. 
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Abstract 

 
Laser-driven ion acceleration is attracting widespread interests because of the prospects of realizing 

compact and desktop ultrafast ion sources, which has potential applications in many fields, such as 
cancer therapy, proton-boron fusion, proton imaging etc. This report will introduce the recent 
progress on laser-driven proton acceleration carried out in the Shanghai Superintense Ultrafast Laser 
Facility (SULF). 

SULF is the first 10 PW-class laser facility in China, located in Shanghai Pudong New District, 
which was proposed and constructed by the Shanghai Institute of Optics and Fine Mechanics in 2016. 
In 2017, the SULF-10 PW beamline has realized output peak power up to 10.3 PW with 339 J output 
pulse energy compressed to 21 fs pulse duration. This peak power was further increased to 12.9 PW 
in 2019. 

In the commissioning phase of SULF-10 PW laser beamline, the laser energy of 72±9 J is directed 
to a focal spot of ~6 μm diameter (FWHM) in 30 fs pulse duration, yielding a focused peak intensity 
around 2.0×1021 W/cm2. As shown in Fig.1, high-energy proton beams with maximum cut-off energy 
up to 62.5 MeV are achieved using flat copper foils at the optimum target thickness of 4 μm via target 
normal sheath acceleration (TNSA) mechanism. [1] 

Meanwhile, we also apply the 3D-printed microwire array structure to enhance the proton 
acceleration. [2] After optimizing the laser contrast of SULF-10 PW laser beamline with the single 
plasma mirror, by using the 1.7 PW laser interacting with microwire array targets, the 62.8 MeV 
proton beams are obtained at the optimal structure period, which is significantly  enhanced compared 
with flat foils. 
 

 
Figure 1. The proton cut-off energy as a function of the target thickness of the plain Cu foils measured in the target 
normal direction (red squares) and in the laser propagation direction (blue circles). (b) Typical proton spectra for five 
target thicknesses. (c)-(d) The raw IP data in the target normal direction and laser direction for the best result of proton 
acceleration from a shot on a 4-μm Cu foil, where the inset in (c) is a magnified image of the ion trace in the high-energy 
region. 
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Abstract 

 
With the development of high-intensity, high-repetition-rate laser systems, it has become critical to 
be able to detect and characterize in real time the laser-generated plasma parameters such as gamma 
rays, electrons, high-energy protons, and heavier ions. In the case of a laser-driven proton boron 
fusion experiment, the particular interest is in detecting and characterizing the resulting alpha particle 
beam. CR-39 nuclear tracker detectors (sensitive to each individual particle with nearly 100 % 
efficiency) are often used to detect alpha particles. However, they are more useful for determining 
the total delivered dose rather than for determining the beam properties for each individual shot.  
Set of standard ion diagnostics optimized for a real-time feedback such as ion collectors, single-
crystal diamond and silicon carbide detectors and Thomson parabola spectrometer can be used as 
complementary diagnostics. The use of absorbers placed in front of the time-of-flight detectors might 
help in the discrimination of proton and alpha particles energy spectra and ensures no heavier ions 
(carbon, boron etc) contributes to the total signal, while the TPS can be used to check the maximum  
energies for different ion species. 
Analysis of data acquired during our experimental campaign, summary of the optimal conditions for 
detection of laser-driven alpha particles and key results will be presented and discussed. 
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Abstract 

 
The development of ultra-high-intensity lasers (UHIL) facilities, thanks to the Chirp-Pulse-Amplification 
(CPA), allows thinking about many new applications. 
Micro-Bubble-Implosion is a concept introduced in [1], which consists of the possibility of having an 
implosion of a spherical cavity target due to the redistribution of the electrons due to the interaction of the 
target with a UHIL (10ଵ଼ − 10ଶଶ𝑊/𝑐𝑚ଶ). Due to the interaction, the target is completely ionized, and the 
electrons, due to their much lower mass compared to the ions, will reach an equilibrium condition. This charge 
separation may lead to the generation of a very intense electric field, which will lead to the implosion of the 
ions. By considering very light ions, i.e., hydrogen and eventually its isotopes, numerical and analytical models 
show that when the ions are fully compressed, they can reach densities in the order of about 10ହ times the 
ordinary solid state, i.e. like in a white-dwarf, leading to an electric field which can be as high as two order of 
magnitude lower than the so-called Schwinger limit (10ଵ଼ 𝑉/𝑚).  
The main applications are related to ions acceleration up to the relativistic regime and ultra-intense coulomb 
field generation [1,2].  
In this work, we will show a preliminary study related to the application of MBI to nuclear fusion. We carried 
out a numerical analysis employing a 1D code. We considered a submicrometric target constituted by an 
external gold layer and two internal layers made of boron and hydrogen. We simulated the evolution in time 
of these layers, and consequently, we defined a procedure to evaluate the reactivity < 𝜎𝑣 >.  
Thanks to this, we consider several theoretical scenarios coherent with the MBI phenomenon that may lead, 
under the proper assumption, to the breakeven point. For example, Figure 1 shows the reactivity vs the Energy 
of particles [3] for suitable geometric parameters of the bubble. In the full paper, more geometric cases and 
figures of merit will be shown. 
 

 
Figure 1.   < 𝜎𝑣 > vs COM energy. 
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Abstract 
 
Many approaches to proton-boron fusion rely upon the interaction of intense lasers with pulse lengths 
in the 10s fs to few ps range, with solid targets. These targets may be thin, to optimise acceleration 
mechanisms such as TNSA and RPA, or have nano-structured surfaces, to enhance laser coupling. 
Such micron or nano-scale structures are susceptible to disruption by hydrodynamic motion, which 
may compromise the intended functioning of the target. In the field of laser-plasma interactions, we 
commonly associate hydrodynamics with experiments driven by nanosecond laser pulses. However, 
hydrodynamic motion can also be initiated by the interaction of a short-pulse laser with a solid target 
and produce significant effects on picosecond timescales [1-12]. This motion is usually not well 
represented by PIC simulations and nor is it commonly diagnosed in experiments. In this presentation 
we will consider some experiments where picosecond and sub-picosecond hydrodynamic evolution 
is diagnosed, driven by both picosecond [1,2,7] and 10s femtosecond laser systems [4-6, 8-12] 
interacting with both solid and CH foam targets. These experiments have all been comprehensively 
modelled using PIC, hydrodynamic and radiation-hydrodynamics simulation codes, run in series, in 
both 1- and 2-D. In addition, we will consider a purely simulation-based study to investigate the 
regimes in which hydrodynamics is important [3]. 
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Abstract 
 

Amplitude Laser has a long experience in developing and providing high intensity lasers to 
facilities interested in exploring and exploiting compact particle acceleration. While Petawatt 
lasers were until recently used to explore the acceleration of electrons up to 5GeV energy in 
as short as 10cm length, or production of protons up to 60MeV energy, facilities now aim at 
providing dedicated beamlines, and improving the flux by increasing the repetition rate of the 
lasers and targets in the range between 10Hz and 100Hz. 
This trend requires ultrafast laser companies to develop the corresponding pump lasers. 
Indeed, for a 2PW laser to be operated at 10Hz operation, Amplitude has developed a 
dedicated pump laser delivering up to 70J at 10Hz @1µm in the nanosecond regime. This 
laser development constitutes a significant improvement in Amplitude laser portfolio, induced 
innovative solutions to manage heat load in high energy lasers, and opened a path towards 
high energy lasers dedicated to shock compression studies.  
Since the recent achievements at NIF on net gain with inertial confinement fusion, several 
national and private initiatives require kJ class laser technologies both for compression or 
ignition, both at few shots per minute but also at 10Hz operation. 
We propose to present Amplitude roadmap for the development of such kJ class lasers, our 
technical progress on relevant technological bricks, and the corresponding challenges. 
For example, proton generation require usually very high temporal contrast, be it with 30fs or 
500fs pulse durations, and we will present our recent progress on high contrast seeders based 
on OPCPA, either operable at 800nm or 1µm. 
Additionally, the use of several laser beams to be focused on a target require precise timing 
synchronization of the different beams, we will present our solutions to control the time-of-
arrival of several laser pulses with a sub-ps precision. 
We will also present our ability to provide temporally shaped pulses at 100J energy in the 
nanosecond regime, of particular interest for optimized compression of targets.  
Finally, we will present our progress on kJ-class laser heads development, supported by the 
Thrill European project.  
Interestingly, we can also anticipate attractive perspectives for other applications that could 
benefit from the laser developments dedicated to inertial confinement fusion. 
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Abstract 
 
Semiconductor-based neutron detectors are characterized by small size, high energy resolution, 
good spatial resolution and stable response at the depletion voltage. Consequently, these neutron-
detectors are important for the fields of nuclear proliferation prevention, monitoring neutron-
scattering experiments, cancer treatment and fusion experiments. However, there are some 
problems such as low neutron detection and limited resistance to radiation; therefore, critical 
improvements are needed to enable sufficiently effective neutron detection. 
Since neutrons are not charged particles, they cannot be detected by ionization directly using silicon 
detectors. However, if a semiconductor detector incorporates a neutron reactive material it can be 
used as a neutron detector. For this, if neutrons are fast, they need to be moderated with compounds 
rich in hydrogen. If neutrons are slow, only converter layers are required. Through the reactions 
caused inside these layers, charged particles are produced as reaction products, which are then 
detected by the silicon detectors. Planar and 3D detectors filled with the converter materials will be 
considered. Prospects, issues and mitigation strategies, including a brief insight into a new 
fabrication batch aiming for a new technology at CNM which will try to mitigate the current issues 
and optimize the parameters will be discussed. Geant4 will be used to simulate the behaviour of 
conversation layer. In conclusion we will briefly compare SiC to Si based neutron detectors for 
nuclear fusion experiments. 
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Abstract 
 
 
 

Recent progress in inertial fusion as well as magnetic confinement experiments have initiated new 
research efforts for Fusion Energy. The main path is based on the Deuterium Tritium Reaction. While 
many research groups in start-ups and national institutions are addressing basic physics issues, 
technological problems associated with Tritium breeding and the material problems due to the high 
neutron flux are not yet addressed with the necessary intensity to achieve the goal of Fusion Energy 
within a couple of decades. Therefore, it is timely to investigate the potential of neutron free fusion 
reactions like the (_5^11)B (p,α)2α reaction using conventional accelerator beams and intense laser 
generated proton beams. We performed experiments at the 320 kV high voltage platform at the 
Institute of modern Physics in Lanzhou and the Laser Fusion Research Center at Mianyang. There 
are different reaction channels, but in no case three alpha particles are emitted with each 2.7MeV 
energy. In the experiments at IMP-Lanzhou we also used hydrogen doped boron targets and the alpha 
yield in this case is increased by approximately 30%. In experiments with intense proton beams at 
the Laser Fusion Research Center in Mianyang we observed up to 1010/sr/ alpha particles per laser-
shot. This presently constitutes the highest yield normalized to the laser energy on target. 
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Abstract 

 
The Dense Plasma Focus (DPF) device stands out as a promising approach for fusion energy 
generation, particularly using hydrogen-boron (pB11) fuel [1, 2]. Its potential advantages over other 
fusion technologies stem from its compact size, simplicity, and unique approach to plasma 
confinement. The DPF is extremely compact, with electrodes typically measuring just a few 
centimeters in diameter. The entire apparatus can fit within a small room, making it much smaller 
than other fusion devices. It doesn't require external magnets or lasers like other fusion devices, 
reducing the complexity and potential cost of the system. The DPF generates a high-density plasma 
requiring ion confinement less demanding than the millions of orbits required in tokamaks or other 
fusion devices. Finaly and most important, unlike other fusion approaches that focus on maintaining 
plasma stability, the DPF leverages the natural filamentation instabilities of the plasma to concentrate 
its energy. This unique feature potentially simplifies the challenge of achieving the necessary 
conditions for fusion, as it doesn't rely on combating instabilities but rather harnesses them. 
 
The present work focuses on measuring the kinetic energy of deuterium ion and neutron beams 
emitted by a small Dense Plasma Focus (DPF) device. A Faraday Cup diagnostic is developed to 
characterize the ion beam produced by the DPF device. Utilizing the time-of-flight (TOF) method, 
the kinetic energy of the deuterium ions is determined. The Faraday Cup captures the ions, allowing 
for the precise measurement of their current, while the TOF method is used to calculate the ions' 
velocity and, subsequently, their kinetic energy. A specially designed differential gas pumping system 
is employed to enhance the accuracy of the measurements. This system helps maintain a controlled 
environment, ensuring that the ion beam's characteristics are less affected by external gas interactions, 
thus improving the reliability of the data collected. In addition to the electrical signals recorded, a 
diagnostic setup consisting of a scintillator and a photomultiplier tube records both the hard X-rays 
and neutrons produced by the DPF. An attempt is made to correlate the recorded data. 
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Abstract 

Recent progress in nanosystems development has generated significant enthusiasm for the creation 
of high-aspect-ratio 2D nanostructures - the elementary blocks of different type and size materials 
preparation [1,2].  
Most of the research has primarily focused on two-dimensional 2D planar nanostructures where the 
film thickness is significantly smaller than the planar dimensions. With advances in nanofabrication 
techniques and the increasing demand in the field, it is possible to exploit the effect of film thickness 
towards synthesis of 3D diluted compounds.  
On the basis of our previous investigations, we are developing and using the Laser-Plasma method 
which enables preparation of nanostructured layers with fine and perfect structures of high purity and 
even different isotope content [3,4]. The usage of resonance light heat creates the opportunity to 
energize the selected atoms as well as their groups (assembles) and to produce plasma with the 
necessary properties relevant to structures which must be prepared. This technique was successfully 
used by the authors to study the conditions for obtaining diamond-like films, as well as thin 2D layers 
of B4C and SiC, the both homogeneously doped GaAs:Mn layers and two-dimensional structures, 
including a δ-doped GaAs:Mn layer and a InxGa1 – xAs quantum well separated by a GaAs spacer 
[3].  
In this study, we showcase the fabrication of nanostructures by laser plasma method reaching 
thicknesses of up to 500 nm, accomplished through the creation of nano trenches in the different 
substrates including monocrystalline silicon, pure natural boron and boron enriched by isotope B11.  
Subsequently, the evolution of structural and geometrical  properties as a function of parameters of 
laser plasma process have been presented as well as possibility of introducing hydrogen atoms into 
the boron structure. 
The results are substantiated with computing simulations. Our works open horizons in the utilization 
of the third dimension for diluted and enriched materials useful for preparation of different structures 
including targets for  potential applications in future laser technologies.  
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Abstract 
 
α-Al₂O₃, or corundum, is known for its exceptional hardness, stability at high temperatures, and 
optical properties. This makes it suitable for use in harsh environments such as nuclear reactors and 
high-power lasers. 
While nuclear fusion is considered a "clean" energy source, it produces high-energy neutrons that 
can interact with the materials in fusion reactors. These interactions can cause structural defects in 
the reactor materials and lead to nuclear activation, which converts stable isotopes into radioactive 
ones, creating secondary radioactive waste. 
This study examines how fast neutron irradiation affects the stability of point defects in transparent 
polycrystalline α-Al₂O₃ ceramics. The defects are optically active, meaning they absorb and emit 
light, which can be observed as specific luminescence bands in photoluminescence (PL) spectra. 
Electron paramagnetic resonance (EPR) spectroscopy is used to identify defects such as trapped 
hole centers and electron-type F+ centers, while PL spectroscopy confirms the presence of F- and 
F2-type centers. 
Key findings include: 
• F+ Centers: Higher neutron flux results in a greater number of F+ centers, which are electron-type 
defects associated with oxygen vacancies. 
• Hole-Trapped Centers: The study also identifies hole-trapped centers that contribute to the 
average EPR signal around the "g ≈ 2" value. 
• Thermal Annealing: The material shows the fastest thermal annealing of radiation-induced 
paramagnetic defects at temperatures between 600 and 750 K. 
In conclusion, increased neutron flux leads to more F+ centers, and the most effective thermal 
annealing of these defects occurs between 600 and 750 K. 
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The landscape of attainable radio-isotopes with medical cyclotrons is limited due to the low

energy of accelerated particles. A few radio-isotopes are produced with low energy protons
at hospitals. In France, only the ARRONAX cyclotron in Nantes is able to produce several
isotopes  with  energetic  protons  but  also  alpha  particles,  for  a  broad  range  of  medical
applications. A new way of producing those radio-isotopes has been studied, that is, using
secondary alpha particles  sources as a way to generate  those  relevant  isotopes. Proton-

Boron nuclear reactions have been actively studied these last few years as a possible way of

producing secondary alpha particles sources. Proton acceleration by interaction of ultra-high
intense  lasers  with  hydrogenated  targets  is  the  preferred  way  to  initiate  those  type  of
reactions.  [1] The versability  of such laser systems is  the preferred way to complement

conventionally used medical cyclotrons.The two main mechanisms of proton acceleration
studied for this nuclear scheme are the Target Normal Sheath Acceleration (TNSA) and the

Hole-Boring (HB) process. In the first case, protons are accelerated at the rear side of the
target via the electrostatic field induced by laser driven electrons escaping from the target.
The exponential  shape of the proton energy spectrum induces a great number of nuclear

reactions throughout a Boron secondary target despite a decrease of the cross-section above
the main resonance at 675 keV. For the Hole-Boring process, protons are accelerated at the

front  side  thanks  to  the  electric  field  induced  by the  electrons  pushed by the  radiation
pressure  of  these high laser  intensities.  Accelerated  protons  interact  directly  with boron
atoms contained within the same target [2]. Different types of targets have been studied both

numerically  and experimentally  for Hole-Boring based alpha production.  Particle-in-Cell
(PIC) and Monte-Carlo (FLUKA) simulations  have been conducted  to better  understand

experimental  campaigns  done  on  the  VEGA-III  laser  at  CLPU,  Salamanca,  Spain  in
november 2022 and march 2023. This laser is characterized by a short pulse duration, 30fs
and a high-repetition rate of 1Hz. The two proton acceleration schemes have been studied

numerically  to  better  understand the  experimental  data  and to  deepen the  analysis.  PIC
simulations for TNSA protons could directly be compared with experimental diagnostics

and gave confidence  for  Hole-Boring  protons  results.  Monte-Carlo  simulations  for  both
schemes  were  then  directly  compared  to  experimental  data  and  confirmed  the  results.
Simulations for scattered ions also gave confidence in the interpretation of the diagnostic

and helped discriminate particles obtained on the detectors. 
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Abstract 

 
Alpha Ring fusion reactor development focuses on producing nuclear fusion under plasma conditions 
much less extreme in density and temperature than traditional methods. The approach is to leverage 
collective correlated dynamics of local charges. Experimental measurements in the fusion reactor are 
primarily two-fold: (1) evaluating power gain by heat out (calorimetry) divided by electrical power 
in, and (2) measuring high-energy fusion products. Analysis of systematic and statistical errors is key 
to evaluating the potential of this non-traditional approach to fusion 
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Abstract 
 
Nuclear reaction between a proton and a 11B nucleus (p11B fusion) constitutes today an attractive 
route to avoid the well known challenges featuring conventional methods for power generation based 
on nuclear fusion. Handling of tritium, radiation damage and radioactivity are issues under 
consideration of the scientific communities. In this respect, the yielding three energetic α-particles is 
very attractive, as it only involves abundant and stable isotopes in the reactants and no neutrons in 
the reaction products. The chance to optimize the p11B reaction producing intense α-particles streams 
in compact, and potentially economic way, open the way for the realization of a new generation of 
solid targets sustaining not only the efficient p11B fusion but also the need for economic procedures. 
In this concern, developing low cost, efficient, low time- and material-consuming production 
methods, with high throughput and reproducibility is a challenging issue. Within the project FUSION 
we are studying the potential of a fabrication method based on the production of polymer fibers by 
means of electrospinning (ES), as a potential alternative to the ones already tested. This technique 
allows to obtain tape or mat of dense fibers (on a gram scale) having on demand diameter (from 
submicron to tens of microns), compositio  n (polymers, hybrid organics/inorganics), arrangement 
(aligned or random oriented, see Figure 1), extension (up to several cm2), thickness (from micrometric 
monolayers to hundred of microns)[1-2]. The obtained material can be either free standing or 
deposited on different substrates. Therefore, if on one hand ES offers the undoubted advantages of  
versatility, cheapness and high production rate, on the other hand it presents new technological 
challenges. The need for precise thicknesses and material densities required by the nuclear 
experiments of FUSION questions the ES about its real performance limits. However, plastic fibers 



 

5 µm 

made by Poly(methyl methacrylate) (PMMA) or Polystyrene (PS) constitute natural proton sources 
and allow to embed inorganic Boron (with demanded density) into the polymers, thus making 
electrospun fibers good candidates for alternative solid targets suited in efficient p11B fusion. In this 
contribution, we show the first studies on the optimization procedure to produce compact aligned and 
randomly oriented fibers with the potential for a new generation of targets for FUSION project. In 
particular the control of the geometries and the layer distributions are tackled and the first 
optimization results are shown. The here presented fibers are promising building blocks for future 
targets in FUSION experiment.  

 
 
   
 

 
 
 

 
 
 
 

Figure 1. PMMA electrospun fibers. (a) Aligned fiber showing optimal uniformity and absence of defects. (b) Random 
oriented fibers. 
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Abstract 

 
The stopping power of light ions in solids has been extensively studied for decades, with 
both theoretical and experimental success. The same cannot be said for a plasma 
environment, where collective effects may modify the interaction. Experimental 
characterization of this phenomena, and understanding its underlaying plasma dynamics is 
important for e.g. plasma charge strippers in accelerators, and for stellar energy transport in 
astrophysics. 
Studying the interaction of protons with boron plasma specifically may have implications 
for fusion reactor design, where the effect of electronic screening on boron-proton fusion 
becomes important through changes to the stopping power of the incoming protons and the 
outgoing α particles which contribute to heating the plasma. 
To perform these experiments, we employ our high contrast 20 TW laser to generate a high 
repetition rate TNSA proton beams. Using an auxiliary laser pulse, we tailor the pre-formed 
boron plasma plume target. The proton beams are characterized using a Thompson parabola 
ion spectrometer, and boron-proton fusion products are detected by CR39 detectors and are 
later analyzed using AI-based software. 
I will present preliminary results on irradiation of solid boron, and present the planned  
experimental campaign. 
 

 
Figure 1.The experimental system: (Left)  Image of the experimental chamber. 

(Right) Schematic view of the planed full system.   
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Abstract 

 
The Dense Plasma Focus (DPF) device stands out as a promising approach for fusion energy 
generation, particularly using hydrogen-boron (pB11) fuel [1, 2]. Its potential advantages over other 
fusion technologies stem from its compact size, simplicity, and unique approach to plasma 
confinement. The DPF is extremely compact, with electrodes typically measuring just a few 
centimeters in diameter. The entire apparatus can fit within a small room, making it much smaller 
than other fusion devices. It doesn't require external magnets or lasers like other fusion devices, 
reducing the complexity and potential cost of the system. The DPF generates a high-density plasma 
requiring ion confinement less demanding than the millions of orbits required in tokamaks or other 
fusion devices. Finaly and most important, unlike other fusion approaches that focus on maintaining 
plasma stability, the DPF leverages the natural filamentation instabilities of the plasma to concentrate 
its energy. This unique feature potentially simplifies the challenge of achieving the necessary 
conditions for fusion, as it doesn't rely on combating instabilities but rather harnesses them. 
 
The present work focuses on measuring the kinetic energy of deuterium ion and neutron beams 
emitted by a small Dense Plasma Focus (DPF) device. A Faraday Cup diagnostic is developed to 
characterize the ion beam produced by the DPF device. Utilizing the time-of-flight (TOF) method, 
the kinetic energy of the deuterium ions is determined. The Faraday Cup captures the ions, allowing 
for the precise measurement of their current, while the TOF method is used to calculate the ions' 
velocity and, subsequently, their kinetic energy. A specially designed differential gas pumping system 
is employed to enhance the accuracy of the measurements. This system helps maintain a controlled 
environment, ensuring that the ion beam's characteristics are less affected by external gas interactions, 
thus improving the reliability of the data collected. In addition to the electrical signals recorded, a 
diagnostic setup consisting of a scintillator and a photomultiplier tube records both the hard X-rays 
and neutrons produced by the DPF. An attempt is made to correlate the recorded data. 
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Abstract 
 
The interaction of high-power lasers with matter can be exploited for driving low-rate fusion reactions 
in laboratory conditions. Such experiments have gained significant interest, due to the numerous 
applications that laser-driven fusion reactions potentially allow, including research on fuels for fusion 
energy production [1,2], astrophysics [3] and alpha-particle generation for medical treatments [4]. 
However, the detection of the nuclear fusion reactants and the typical ionic products of the low-rate 
fusion processes, is a challenging issue, due to their low flux and the necessity of differentiating them 
from the various ion species that are accelerated during the laser-matter interaction. One of the 
diagnostic devices that can be implemented in laser-driven fusion experiments, is a Thomson 
spectrometer (TS), which is capable to detect and discriminate ions according to their mass-to-charge 
ratio (m/q). In this work we report about the results obtained with a TS, which was designed, 
developed and upgraded throughout the last years at the ENEA research center in Frascati (Italy), in 
the context of different laser-driven fusion experiments [6,7]. This device has been successfully 



 
implemented in schemes for p+11B fusion reactions (with both in-target and pitcher-catcher 
configurations), aiming at detecting the generated alpha particles. With an adequate filtering system 
[8], we also implemented the TS in an experiment of laser-driven D-D fusion reactions, where it 
showed promising results in differentiating the accelerated deuterium form the other ion species. 
Finally, we will show the design of a novel, improved prototype of TS that is currently under 
development. 
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Abstract 

 
Nickel-titanium (Ni/Ti) nanolayer thin film (NLTF) is a class of composite material made 

of alternating nanometer-scale Ni and Ti layers. Multilayer thin films of Ni/Ti are found in 
applications in neutron and soft x-ray optics due to their excellent contrast factor, in reactive 
films for micro-joining solutions, and many others. The interaction of fs laser pulses with Ni/Ti 
thin film is presented. The experimental sample, composed of ten alternating Ni and Ti layers, 
was deposited on a silicon substrate by ion-sputtering [1]. Single and multi-pulse irradiation 
was done in the air with focused and linearly polarized fs laser pulses (pulse duration 170 s, 
wavelength 1026 nm). For achieving selective ablation of one or more layers, without reaching 
the Si substrate, the single pulse energy gradually increased from the ablation threshold to a 
level that completely removed the NLTF [2]. Photomechanical spallation is considered the most 
important process for the realization of selective ablation [3]. We also studied multi-pulse 
irradiation and the production of laser-induced periodic surface structures (LIPSSs) on the 
NLTF [4]. We used optical and scanning electron microscopy (SEM&EDS) in the experiment. A 
non-contact optical profilometer was used to prove the selective ablation of a particular nano-
layer from the rest of the NLTF. From the results, we found optimal conditions to achieve 
selective ablation and LIPSS formation on the Ni/Ti thin film (Fig1.). 
 (a)    (b)    (c) 

 
Figure 1. SEM micrographs of (Ni/Ti) surface: (a) scheme of irradiation, (b) single pulse selective 

ablation (c) LIPSS with 10 laser pulses irradiations (pulse duration t=170 fs; wavelength 1026 nm). 
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